題號: 270

國立臺灣大學 109 學年度碩士班招生考試試題

科目: 動力學(B)

題號: 270

節次: 7

共1頁之第1頁

- . (25%) A uniform rod of mass 2m and length l rests along the y-axis on a horizontal table without friction. A particle of mass 2m is moving along the x-axis at a speed v_0 . At t = 0 the particle strikes the end of the rod and sticks to it.
 - (a) What is the vector expression for the position of the center of mass of the system as a function of time, R(t)? (9%)
 - (b) Please find the angular velocity ω of the rod about its new center of mass immediately after the collision. (8%)
 - (c) What is the velocity ν of the attached particle immediately after the collision? (8%)

- 2. (25%) A string (mass is negligible) attached to the bottom of a table is wrapped around a homogeneous cylinder of radius R and mass M. The cylinder is dropped from the test and rotates as the string unwinds at time t = 0.
 - (a) Please find the tension T in the string. (8%)
 - (b) What is the linear acceleration A and angular acceleration α of the rotating cylinder? (9%)
 - (c) What is the velocity V and angular velocity ω of the cylinder's center? (8%)

3. (25%) A rock of mass M=1kg is tossed from the origin into the air at time t=0. The initial velocity of the rock is $\vec{v}_0=(4.9\text{m/s}, 4.9\text{m/s})$. In addition to the force of gravity, the motion is subject to an air drag force, $\vec{f}_{drag}=-b\vec{v}$. Here, we assume that the gravitational acceleration $g=9.8\text{m/s}^2$ and the drag constant b=2kg/s. Please find the maximum height of this motion, H_{max} .

4. (25%) A block of mass M=1kg is subject to a linear restoring force $f_{\rm spring}=-kx$ and a periodic external force $f_{\rm ex}=\frac{F_0}{\sqrt{2}}[\cos(\Omega t)+\sin(\Omega t)]$. Thus, the equation of motion can be written as $M\ddot{x}=-kx+\frac{F_0}{\sqrt{2}}[\cos(\Omega t)+\sin(\Omega t)]$. We know that x(t=0)=0 and $x\left(t=\frac{\pi}{4}{\rm seconds}\right)=\sqrt{2}{\rm m}$. Please find the value of x at $t=\pi$ seconds. Here, $F_0=3\sqrt{2}{\rm kg}\cdot{\rm m/s}^2$, $k=4{\rm kg/s}^2$ and $\Omega=1{\rm s}^{-1}$.

試題隨卷繳回