題號: 36 科目:普通化學(B) 題號: 36 共 4 頁之第 / 頁 | ユニニキートケトレナイト | 上標明顯號依序作答 | |--------------|-----------| | * 商什么么不 | | | | | - Gas constant: R = 8.314 J/mol-K = 0.0821 L-atm/mol-K - Atmic mass: H = 1.0, He = 4.0, C = 12.0, O = 16.0, N = 14.0, Cl = 35.5, Na = 23.0, P = 31.0 - $C = 3.00 \times 10^8 \text{ m/s}$; $h = 6.63 \times 10^{-34} \text{ J-s}$; F = 96500 C/mol - I. 選擇題 (90%, 每題 3 分,單選與多重選混合,每題答案可能 1 至多個,全部選對始得題分 3 分) - 1. Which of the following conversion is correct? (A) -3° C = 270.15 K (B) 15 mg = 0.15 g (C) 28 torr = 28 mmHg (D) 33 nm = 3.3×10^{-9} m 2. A typical commercial-grade phosphoric acid is 85.0% H₃PO₄ by mass and density 1.70 g/mL. Calculate the molarity of the acid. (A) 8.67 M (B) 14.7 M (C) 17.3 M (D) 12.0 M - 3. For the ion ${}_{16}^{32}S^{2-}$, which of the following statement is true? - (A) the atomic number is 16. - (B) the number of protons is 16. - (C) the number of electrons is 16. - (D) the number of neutrons is 16. - 4. Solubility rules predict precipitate formation for mixing 0.1 M aqueous solutions of (A) NaCl and Hg(NO₃)₂ (B) HCl and Ba(OH)₂ (C) H₂SO₄ and Ba(OH)₂ (D) Na₂S and Cu(NO₃)₂ - 5. Which of the following concerning with CH₃CH₂OH is true? - (A) It's a weak electrolyte. - (B) The functional group of CH₃CH₂OH is hydroxyl group. - (C) CH₃CH₂OH and CH₃OCH₃ are structural isomers. - (D) The enthalpy of vaporization of CH₃CH₂OH is greater than CH₃OCH₃ - 6. The concentration of a hydrogen peroxide solution can be determined by titration. If 22.4 mL of a 0.0150 M KMnO₄ solution are required to oxidized 25.0 mL of a H₂O₂ solution. What is the concentration of the hydrogen peroxide solution? 2MnO₄⁻ + 5H₂O₂ + 6H⁺ → 5O₂ + 8H₂O + 2Mn²⁺ (A) 0.00538 M (B) 0.0134 M (C) 0.0167 M (D) 0.0336 M - 7. Which of the following statement about acid and base is correct? - (A) HSO₄ can act as a Brønsted-Lowry base. - (B) H₂CO₃ is a polyprotic acid. - (C) The acidity of 0.10 M solution: NaF = NaCl < HClO < HClO₂ - (D) In the reaction: $Cu^{2+}(aq) + 4Cl^{-}(aq) \implies [CuCl_4]^{2-}(aq)$, Cu^{2+} is the Lewis acid. - 8. For 25.00 mL of HF(aq) with unknown concentration is titrated to the equivalence point with 19.80 mL of 0.01246 M Ba(OH)₂? What's the concentration of the unknown acid? (A) 0.009868 M (B) 0.01573 M (C) 0.01974 M (D) 0.03146 M - 9. If one mole of H₂ and CH₄ gases are compared at 25°C and 1 atm, which of the following quantities will be equal to each other? - (A) number of gas molecules (B) volume (C) root-mean-square speed (D) average kinetic energy. - 10. How many orbitals have the quantum values of n = 3 and $\ell = 2$? (A) 2 (B) 3 (C) 5 (D) 9 題號: 36 科目:普通化學(B) 題號: 36 共 4 頁之第 2 頁 11. Which of the following molecules would you expect to be polar? - (A) PCl_5 (B) H_2Se (C) XeF_2 (D) SF_4 - 12. Which of the following can form hydrogen bonds with water? - (A) HCOOH (B) $C_2H_5COC_2H_5$ (C) C_6H_6 (D) F^- - 13. In order to prepare a buffer with pH 7.1, which of the following pair should you choose best? - (A) HCOOH/NaHCOO ($K_a = 1.8 \times 10^{-4}$) - (B) CH₃COOH/NaCH₃COO ($K_a = 1.8 \times 10^{-5}$) - (C) $H_2CO_3/NaHCO_3$ ($K_a = 4.4 \times 10^{-7}$) - (D) NH₄Cl/NH₃ (K_b of NH₃ = 1.8 × 10⁻⁵) - 14. A face-centered cubic cell contains 8 X atoms at the corners of the cell and 6Y atoms at the faces. What is the empirical formula of the solid? - (A) X_4Y_3 (B) X_3Y_4 (C) X_3Y (D) XY_3 - 15. Which of the following substance would you expect to be more soluble in benzene than in water? - (A) C_5H_{12} (B) CH_3OH (C) HBr (D) NaBr - 16. A solution is 35.0% by mass carbon tetrachloride (CCl₄) in benzene (C₆H₆) at 20°C. The vapor pressure of pure benzene and pure carbon tetrachloride at this temperature is 74.61 mmHg and 91.32 mmHg, respectively. Calculate the vapor pressure of the solution at 20°C (assume ideal solution). - (A) 58.1 mmHg (B) 78.2 mmHg (C) 80.5 mmHg (D) 87.7 mmHg - 17. Which of the following aqueous solutions has the highest boiling point (assume 100% dissociation for all soluble ionic compounds)? - (A) 0.20 m H_{NO_3} (B) 0.18 m NaCl (C) $0.15 \text{ m K}_2\text{CO}_3$ (D) 0.25 m HF(aq) - 18. The reaction of nitric oxide with hydrogen at 1280° C is: $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$ From the following data collected at this temperature: | Experiment | [NO] (M) | [H ₂] (M) | Initial Rate (M/s) | |------------|-----------------------|-----------------------|-------------------------| | 1 | 5.0×10^{-3} | 2.0×10^{-3} | 1.3 x 10 ⁻⁵ | | 2 | 10.0×10^{-3} | 2.0×10^{-3} | 5.2 x 10 ⁻⁵ | | 3 | 10.0×10^{-3} | 4.0×10^{-3} | 10.4 x 10 ⁻⁵ | - (A) The reaction is second order in H₂. - (B) The rate law of the reaction: rate = $k[NO]^2[H_2]^2$ - (C) The value of the rate constant, k, is 2.6×10^2 . - (D) When [NO] = $2.0 \times 10^{-3} \text{ M}$ and [H₂] = $3.0 \times 10^{-3} \text{ M}$, the rate of the reaction is $9.4 \times 10^{-9} \text{ M/s}$. - 19. The conversion of cyclopropane to propene in the gas phase is a first-order reaction with a rate constant of $6.7 \times 10^{-4} \, \text{s}^{-1}$ at 500°C . - (A) The integrated rate law of the reaction is $1/[A]_t = kt + 1/[A]_0$. (A: stands for cyclopropane) - (B) The half-life of the reaction is 1.0×10^3 s. - (C) If the initial concentration of cyclopropane is 0.25 M, after 8.8 min the concentration of cyclopropane is 0.18 M. - (D) It takes 33 min for the concentration of cyclopropane to decrease from 0.25 M to 0.15 M. - 20. The rate constant of a first-order reaction is $3.46 \times 10^{-2} \text{ s}^{-1}$ at 25°C. What is the rate constant at 77°C if the activation energy for the reaction is 50.2 kJ/mol? - (A) 3.47×10^{-2} s (B) 1.07×10^{-2} s (C) 4.06×10^{-2} s (D) 0.702 s 36 題號: 科目:普通化學(B) 題號: 36 共 4 頁之第3 21. The following mechanism has been suggested for the reaction: $H_2O_2 + 2H^+ + 2I^- \rightarrow I_2 + 2H_2O$ Step 1 $H_2O_2 + I^- \rightarrow HOI + OH^-$ Slow Step 2 $OH^- + H^+ \rightarrow H_2O$ Fast Step 3 $HOI + H^+ + I^- \rightarrow I_2 + H_2O$ Fast (A) The rate law deduced from the mechanism is: Rate = $k[H_2O_2][I^-]$. - (B) Step 3 is the rate determining step. - (C) OH is the intermediate included in this mechanism. - (D) H⁺ is the catalyst for the reaction. 22. When the reaction $2H_2S(g) \implies 2H_2(g) + S_2(g)$ is carried out at $1065^{\circ}C$, $K_p = 0.012$. Starting with pure H₂S at 1065°, what must the initial pressure of H₂S be if the equilibrated mixture at this temperature is to contain 0.250 atm of $H_2(g)$? - (A) 1.06 atm (B) 1.86 atm (C) 0.94 atm (D) 0.90 atm 23. For the endothermic reaction in a closed container: $CaCO_3(s) \implies CaO(s) + CO_2(g)$, which of the following actions would favor shifting the equilibrium position to form more CO₂ gas? - (A) The temperature is raised. - (B) Some CaO is added to the system. - (C) Some CaCO₃ is added to the system. - (D) A catalyst is added to the reaction mixture. 24. A 5.5 L sample of a 0.25 M HNO₃ solution is mixed with 1.2 L of a 0.34 M HCl solution. What is the pH of the mixture? (A) 0.27 (B) 0.57 (C) 1.07 (D) 0.50 25. What is the pH of a solution that is 0.10 M NaCH₃COO(aq)? For CH₃COOH, K₅ = 1.8 × 10⁻⁵. (A) 1.69 (B) 5.13 (C) 8.87 (D) 9.26 26. Given the following notation for an electrochemical cell and the standard reduction potential at 298 K: $Ni(s) \mid NiCl_2(aq, 1 M) \mid AgNO_3(aq, 1 M) \mid Ag(s)$ $$Ag^+ + e^- \rightarrow Ag$$ $$E^{\rm o} = 0.80 \text{ V}$$ $$Ni^{2+} + 2e^- \rightarrow Ni$$ $$E^0 = -0.28 \text{ V}$$ - (A) Under standard conditions and 298 K, $E^{\circ}_{cell} = 1.88 \text{ V}$. - (B) Under standard conditions and 298 K, $\Delta G^{\circ} = -208$ kJ. - (C) Increase the concentration of AgNO₃(aq) will increase the E_{cell} . - (D) At equilibrium and 298 K, E_{cell} is less than zero. 27. For the complex ion [FeF₆]⁴, F⁻ ion is a weak field ligand. - (A) The oxidation number of central metal is +6. - (B) The complex ion is paramagnetic. - (C) There are 2 unpaired electrons in each complex ion. - (D) This is a low-spin complex. 28. According to the molecular orbital theory, compare the properties of N₂⁻ and N₂: - (A) N₂ molecule is diamagnetic. - (B) The bond order: $N_2^- > N_2$. - (C) The bond length: $N_2^- > N_2$. - (D) The bond energy: $N_2^- > N_2$. 題號: 36 科目:普通化學(B) 題號: 36 共 4 頁之第 4 頁 29. For the organic compounds, which of the following statement is true? - (B) CH₃CH₂C₆H₅ is the monomer of polystyrene polymer; structure shown as figure. - (C) CH₃CH₂NH₂ is a primary amine. - (D) Protein is a condensation polymer. - 30. For the radioactive radiation, which of the following statement is true? - (A) 131 Is a radioactive isotope. - (B) γ-radiation shows the greatest penetrating power. - (C) The radioactive decay rate can be increased by raising the temperature. - (D) The nuclear reactions are first order reactions. #### II. 計算問答題 (10%) - 31. Consider the decomposition of barium carbonate: BaCO₃(s) \rightarrow BaO(s) + CO₂(g). - (A) Use the data in the following table to calculate the values of ΔH° , ΔS° , and ΔG° at 298 K. - (B) Calculate the equilibrium constant, K, at 298 K. - (C) At what temperature will the reaction be spontaneous? | 6 | BaCO ₃ (s) | BaO(s) | $CO_2(g)$ | | | |---|-----------------------|--------|-----------|--|--| | ΔH _f ° (kJ <mark>/mo</mark> l) | -1216 | -554 | -394 | | | | S° (J/mol.K) | 112 | 70.4 | 214 | | | | ΔG _f ° (kJ/mol) | -1138 | -525 | -394 | | | #### Periodic table of the elements | 1 | | | | 13.5 | 12 | | | | | | | | | | | | 18 | |-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|----------|----------| | 1A | | | | | Υ. | 1.5 | | | | | | ٠ | | | | | 8A | | H
H | 2 | | | | | _ = | 2 | | | 77 | | 13 | 14 | 15 | 16 | 17 | He | | 1.008 | 2A | | | | | | - | | | | 10 | 3A | 4A | 5A. | 6A | 7A | 4.003 | | Li | Be | | | | | | | | | | 1 | B | ć | Ń | ő | 9
F | Ne | | 6.941 | 9.012 | | | | | | | | | | | 10.81 | 12.01 | 14.01 | 16.00 | 19.00 | 20.18 | | 111 | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
A1 | 14
Si | 15
P | 16
S | 17
C1 | 18
Ar | | Na
22.99 | Mg
24.31 | 3B | 4B | 5B | 6B | 7B | 8B | 8B | 8B | 1B | 2 B | 26.98 | 28.09 | 30.97 | 32.07 | 35.45 | 39.95 | | 19
K | 20 | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Ču | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | 39.10 | Ca
40.08 | 44.96 | 47.88 | 50.94 | 52.00 | 54.94 | 55.85 | 58.93 | 58.69 | 63.55 | 65.39 | 69.72 | 72.59 | 74.92 | 78.96 | 79.90 | 83.80 | | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
T | 54
Xe | | Rb
85.47 | Sr
87.62 | Y
88.91 | Zr
91.22 | Nb
92.91 | Mo
95.94 | Tc
(98) | Ru
101.1 | Rh
102.9 | Pd
106.4 | Ag
107.9 | 112.4 | 114.8 | 118.7 | 121.8 | 127.6 | 126.9 | 131.3 | | 55 | 56 | 57 | 72 | 73 | 74 | 75 | 76 | 77
Ir | 78 | 79 | 80 | 81 | 82 | 83 | 84
Po | 85
At | 86
Rn | | Cs
132.9 | Ba
137.3 | *La
138.9 | Hf
178.5 | Ta
180.9 | W
183.8 | Re
186.2 | Os
190.2 | 192.2 | Pt
195.1 | Au
197.0 | Hg
200.6 | T1
204.4 | Рь
207.2 | Bi
209.0 | (209) | (210) | (222) | | | 88 | 39 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | - | 114 | - | 116 | | 118 | | 87
Fr | Ra | Ac | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | | Uuq | | Uuh | | Uuo | | (223) | (226) | (227) | (261) | (262) | (263) | (262) | (265) | (268) | (271) | (280) | | | | | | | | | *Lanthanide series | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | | | 140.1 | 140.9 | 144.2 | (147) | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | 175.0 | | Actinide series | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | | | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | | | 232.0 | 231.0 | 238.0 | 237.0 | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (260) | # 試題隨卷繳回