題號: 36

科目:普通化學(B)

題號: 36

共 4 頁之第 / 頁

ユニニキートケトレナイト	上標明顯號依序作答
* 商什么么不	

- Gas constant: R = 8.314 J/mol-K = 0.0821 L-atm/mol-K
- Atmic mass: H = 1.0, He = 4.0, C = 12.0, O = 16.0, N = 14.0, Cl = 35.5, Na = 23.0, P = 31.0
- $C = 3.00 \times 10^8 \text{ m/s}$; $h = 6.63 \times 10^{-34} \text{ J-s}$; F = 96500 C/mol
- I. 選擇題 (90%, 每題 3 分,單選與多重選混合,每題答案可能 1 至多個,全部選對始得題分 3 分)
- 1. Which of the following conversion is correct?

(A) -3° C = 270.15 K (B) 15 mg = 0.15 g (C) 28 torr = 28 mmHg (D) 33 nm = 3.3×10^{-9} m

2. A typical commercial-grade phosphoric acid is 85.0% H₃PO₄ by mass and density 1.70 g/mL. Calculate the molarity of the acid.

(A) 8.67 M (B) 14.7 M (C) 17.3 M (D) 12.0 M

- 3. For the ion ${}_{16}^{32}S^{2-}$, which of the following statement is true?
 - (A) the atomic number is 16.
 - (B) the number of protons is 16.
 - (C) the number of electrons is 16.
 - (D) the number of neutrons is 16.
- 4. Solubility rules predict precipitate formation for mixing 0.1 M aqueous solutions of

(A) NaCl and Hg(NO₃)₂ (B) HCl and Ba(OH)₂ (C) H₂SO₄ and Ba(OH)₂ (D) Na₂S and Cu(NO₃)₂

- 5. Which of the following concerning with CH₃CH₂OH is true?
 - (A) It's a weak electrolyte.
 - (B) The functional group of CH₃CH₂OH is hydroxyl group.
 - (C) CH₃CH₂OH and CH₃OCH₃ are structural isomers.
 - (D) The enthalpy of vaporization of CH₃CH₂OH is greater than CH₃OCH₃
- 6. The concentration of a hydrogen peroxide solution can be determined by titration. If 22.4 mL of a 0.0150 M KMnO₄ solution are required to oxidized 25.0 mL of a H₂O₂ solution. What is the concentration of the hydrogen peroxide solution? 2MnO₄⁻ + 5H₂O₂ + 6H⁺ → 5O₂ + 8H₂O + 2Mn²⁺

(A) 0.00538 M (B) 0.0134 M (C) 0.0167 M (D) 0.0336 M

- 7. Which of the following statement about acid and base is correct?
 - (A) HSO₄ can act as a Brønsted-Lowry base.
 - (B) H₂CO₃ is a polyprotic acid.
 - (C) The acidity of 0.10 M solution: NaF = NaCl < HClO < HClO₂
 - (D) In the reaction: $Cu^{2+}(aq) + 4Cl^{-}(aq) \implies [CuCl_4]^{2-}(aq)$, Cu^{2+} is the Lewis acid.
- 8. For 25.00 mL of HF(aq) with unknown concentration is titrated to the equivalence point with 19.80 mL of 0.01246 M Ba(OH)₂? What's the concentration of the unknown acid?

(A) 0.009868 M (B) 0.01573 M (C) 0.01974 M (D) 0.03146 M

- 9. If one mole of H₂ and CH₄ gases are compared at 25°C and 1 atm, which of the following quantities will be equal to each other?
 - (A) number of gas molecules (B) volume (C) root-mean-square speed (D) average kinetic energy.
- 10. How many orbitals have the quantum values of n = 3 and $\ell = 2$?

(A) 2 (B) 3 (C) 5 (D) 9

題號: 36

科目:普通化學(B)

題號: 36

共 4 頁之第 2 頁

11. Which of the following molecules would you expect to be polar?

- (A) PCl_5 (B) H_2Se (C) XeF_2 (D) SF_4
- 12. Which of the following can form hydrogen bonds with water?
 - (A) HCOOH (B) $C_2H_5COC_2H_5$ (C) C_6H_6 (D) F^-
- 13. In order to prepare a buffer with pH 7.1, which of the following pair should you choose best?
 - (A) HCOOH/NaHCOO ($K_a = 1.8 \times 10^{-4}$)
 - (B) CH₃COOH/NaCH₃COO ($K_a = 1.8 \times 10^{-5}$)
 - (C) $H_2CO_3/NaHCO_3$ ($K_a = 4.4 \times 10^{-7}$)
 - (D) NH₄Cl/NH₃ (K_b of NH₃ = 1.8 × 10⁻⁵)
- 14. A face-centered cubic cell contains 8 X atoms at the corners of the cell and 6Y atoms at the faces. What is the empirical formula of the solid?
 - (A) X_4Y_3 (B) X_3Y_4 (C) X_3Y (D) XY_3
- 15. Which of the following substance would you expect to be more soluble in benzene than in water?
 - (A) C_5H_{12} (B) CH_3OH (C) HBr (D) NaBr
- 16. A solution is 35.0% by mass carbon tetrachloride (CCl₄) in benzene (C₆H₆) at 20°C. The vapor pressure of pure benzene and pure carbon tetrachloride at this temperature is 74.61 mmHg and 91.32 mmHg, respectively. Calculate the vapor pressure of the solution at 20°C (assume ideal solution).
 - (A) 58.1 mmHg (B) 78.2 mmHg (C) 80.5 mmHg (D) 87.7 mmHg
- 17. Which of the following aqueous solutions has the highest boiling point (assume 100% dissociation for all soluble ionic compounds)?
 - (A) 0.20 m H_{NO_3} (B) 0.18 m NaCl (C) $0.15 \text{ m K}_2\text{CO}_3$ (D) 0.25 m HF(aq)
- 18. The reaction of nitric oxide with hydrogen at 1280° C is: $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$

From the following data collected at this temperature:

Experiment	[NO] (M)	[H ₂] (M)	Initial Rate (M/s)
1	5.0×10^{-3}	2.0×10^{-3}	1.3 x 10 ⁻⁵
2	10.0×10^{-3}	2.0×10^{-3}	5.2 x 10 ⁻⁵
3	10.0×10^{-3}	4.0×10^{-3}	10.4 x 10 ⁻⁵

- (A) The reaction is second order in H₂.
- (B) The rate law of the reaction: rate = $k[NO]^2[H_2]^2$
- (C) The value of the rate constant, k, is 2.6×10^2 .
- (D) When [NO] = $2.0 \times 10^{-3} \text{ M}$ and [H₂] = $3.0 \times 10^{-3} \text{ M}$, the rate of the reaction is $9.4 \times 10^{-9} \text{ M/s}$.
- 19. The conversion of cyclopropane to propene in the gas phase is a first-order reaction with a rate constant of $6.7 \times 10^{-4} \, \text{s}^{-1}$ at 500°C .
 - (A) The integrated rate law of the reaction is $1/[A]_t = kt + 1/[A]_0$. (A: stands for cyclopropane)
 - (B) The half-life of the reaction is 1.0×10^3 s.
 - (C) If the initial concentration of cyclopropane is 0.25 M, after 8.8 min the concentration of cyclopropane is 0.18 M.
 - (D) It takes 33 min for the concentration of cyclopropane to decrease from 0.25 M to 0.15 M.
- 20. The rate constant of a first-order reaction is $3.46 \times 10^{-2} \text{ s}^{-1}$ at 25°C. What is the rate constant at 77°C if the activation energy for the reaction is 50.2 kJ/mol?
 - (A) 3.47×10^{-2} s (B) 1.07×10^{-2} s (C) 4.06×10^{-2} s (D) 0.702 s

36 題號:

科目:普通化學(B)

題號: 36

共 4 頁之第3

21. The following mechanism has been suggested for the reaction: $H_2O_2 + 2H^+ + 2I^- \rightarrow I_2 + 2H_2O$

Step 1 $H_2O_2 + I^- \rightarrow HOI + OH^-$

Slow

Step 2 $OH^- + H^+ \rightarrow H_2O$

Fast

Step 3 $HOI + H^+ + I^- \rightarrow I_2 + H_2O$

Fast

(A) The rate law deduced from the mechanism is: Rate = $k[H_2O_2][I^-]$.

- (B) Step 3 is the rate determining step.
- (C) OH is the intermediate included in this mechanism.
- (D) H⁺ is the catalyst for the reaction.

22. When the reaction $2H_2S(g) \implies 2H_2(g) + S_2(g)$ is carried out at $1065^{\circ}C$, $K_p = 0.012$. Starting with pure H₂S at 1065°, what must the initial pressure of H₂S be if the equilibrated mixture at this temperature is to contain 0.250 atm of $H_2(g)$?

- (A) 1.06 atm (B) 1.86 atm (C) 0.94 atm (D) 0.90 atm

23. For the endothermic reaction in a closed container: $CaCO_3(s) \implies CaO(s) + CO_2(g)$, which of the following actions would favor shifting the equilibrium position to form more CO₂ gas?

- (A) The temperature is raised.
- (B) Some CaO is added to the system.
- (C) Some CaCO₃ is added to the system.
- (D) A catalyst is added to the reaction mixture.

24. A 5.5 L sample of a 0.25 M HNO₃ solution is mixed with 1.2 L of a 0.34 M HCl solution. What is the pH of the mixture?

(A) 0.27 (B) 0.57 (C) 1.07 (D) 0.50

25. What is the pH of a solution that is 0.10 M NaCH₃COO(aq)? For CH₃COOH, K₅ = 1.8 × 10⁻⁵.

(A) 1.69 (B) 5.13 (C) 8.87 (D) 9.26

26. Given the following notation for an electrochemical cell and the standard reduction potential at 298 K:

 $Ni(s) \mid NiCl_2(aq, 1 M) \mid AgNO_3(aq, 1 M) \mid Ag(s)$

$$Ag^+ + e^- \rightarrow Ag$$

$$E^{\rm o} = 0.80 \text{ V}$$

$$Ni^{2+} + 2e^- \rightarrow Ni$$

$$E^0 = -0.28 \text{ V}$$

- (A) Under standard conditions and 298 K, $E^{\circ}_{cell} = 1.88 \text{ V}$.
- (B) Under standard conditions and 298 K, $\Delta G^{\circ} = -208$ kJ.
- (C) Increase the concentration of AgNO₃(aq) will increase the E_{cell} .
- (D) At equilibrium and 298 K, E_{cell} is less than zero.

27. For the complex ion [FeF₆]⁴, F⁻ ion is a weak field ligand.

- (A) The oxidation number of central metal is +6.
- (B) The complex ion is paramagnetic.
- (C) There are 2 unpaired electrons in each complex ion.
- (D) This is a low-spin complex.

28. According to the molecular orbital theory, compare the properties of N₂⁻ and N₂:

- (A) N₂ molecule is diamagnetic.
- (B) The bond order: $N_2^- > N_2$.
- (C) The bond length: $N_2^- > N_2$.
- (D) The bond energy: $N_2^- > N_2$.

題號: 36

科目:普通化學(B)

題號: 36

共 4 頁之第 4 頁

29. For the organic compounds, which of the following statement is true?

- (B) CH₃CH₂C₆H₅ is the monomer of polystyrene polymer; structure shown as figure.
- (C) CH₃CH₂NH₂ is a primary amine.
- (D) Protein is a condensation polymer.
- 30. For the radioactive radiation, which of the following statement is true?
 - (A) 131 Is a radioactive isotope.
 - (B) γ-radiation shows the greatest penetrating power.
 - (C) The radioactive decay rate can be increased by raising the temperature.
 - (D) The nuclear reactions are first order reactions.

II. 計算問答題 (10%)

- 31. Consider the decomposition of barium carbonate: BaCO₃(s) \rightarrow BaO(s) + CO₂(g).
 - (A) Use the data in the following table to calculate the values of ΔH° , ΔS° , and ΔG° at 298 K.
 - (B) Calculate the equilibrium constant, K, at 298 K.
 - (C) At what temperature will the reaction be spontaneous?

6	BaCO ₃ (s)	BaO(s)	$CO_2(g)$		
ΔH _f ° (kJ <mark>/mo</mark> l)	-1216	-554	-394		
S° (J/mol.K)	112	70.4	214		
ΔG _f ° (kJ/mol)	-1138	-525	-394		

Periodic table of the elements

1				13.5	12												18
1A					Υ.	1.5						٠					8A
H H	2					_ =	2			77		13	14	15	16	17	He
1.008	2A						-				10	3A	4A	5A.	6A	7A	4.003
Li	Be										1	B	ć	Ń	ő	9 F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
111	12	3	4	5	6	7	8	9	10	11	12	13 A1	14 Si	15 P	16 S	17 C1	18 Ar
Na 22.99	Mg 24.31	3B	4B	5B	6B	7B	8B	8B	8B	1B	2 B	26.98	28.09	30.97	32.07	35.45	39.95
19 K	20	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Ču	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
39.10	Ca 40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 T	54 Xe
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.94	Tc (98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77 Ir	78	79	80	81	82	83	84 Po	85 At	86 Rn
Cs 132.9	Ba 137.3	*La 138.9	Hf 178.5	Ta 180.9	W 183.8	Re 186.2	Os 190.2	192.2	Pt 195.1	Au 197.0	Hg 200.6	T1 204.4	Рь 207.2	Bi 209.0	(209)	(210)	(222)
	88	39	104	105	106	107	108	109	110	111	112	-	114	-	116		118
87 Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub		Uuq		Uuh		Uuo
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(268)	(271)	(280)							

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(147)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

試題隨卷繳回