題號: 43

科目:普通化學(C)

題號: 43

共 6 頁之第 1 頁

單選題	(第1-30題	, 每題 2 分;	第 31-40 月	題, 每題 4 分;	每個錯誤倒扣1分)
請於答	案卷內之	「選擇題作	F答區」 伯	疚序作答。	

	於答案卷內之「選擇題作答區」依序作答。
1.	What answer should be reported if 4.560 is added to 2.6 x 10 ⁻³ ?
	(a) 4.6 (b) 4.56 (c) 4.563 (d) 4.5626
2.	Give the number of protons (p), electron (e), and neutrons (n) in one atom of 17 ³⁷ Cl. (a) 37 p, 37 e, 17 n
	(b) 17 p, 17 e, 37 n
	(c) 17 p, 17 e, 20 n
	(d) 20 p, 37 e, 17 n
3.	Which of the following are examples of transition metals:
*	(a) Fe and Zn
	(b) Sb and I
	(c) Pm and Gd
	(d) Al and Ga
4	William of the following is a free redical?
4.	Which of the following is a free radical? (a) ICl_2^+ (b) $O_2^{2^-}$ (c) ClO_2 (d) I_3^-
	(a) ICl_2^+ (b) O_2^{2-} (c) ClO_2 (d) I_3^-
5.	The average mass of an atom is determined by
٥.	(a) averaging the masses of each isotope
	(b) taking a weighted average of all isotopic masses
	(c) taking a weighted average of all stable isotopic masses
	(d) adding the isotopic masses and dividing by the number of isotopes
6.	In quantum mechanics, an "l" value of 2 corresponds to a letter designation of orbital:
	(a) s (b) p (c) d (d) f
7.	Which two electron configurations represent elements that would have similar chemical properties?
	I. $1s^22s^22p^4$ II. $1s^22s^22p^5$ III. $[Ar]4s^23d^{10}4p^3$ IV. $[Ar]4s^23d^{10}4p^4$
	(a) I, II (b) I, III (c) 1, IV (d) III, IV
8.	Which of the following species is non-polar?
0.	(a) PF_5 (b) NF_3 (c) IF_3 (d) SF_4
	(4) 2-3
9.	CaCl2 is an example of a:
	(a) covalent compound
	(b) formula unit
	(c) molecular compound

田田山山	•	43
題號	•	40

科目:普通化學(C)

題號: 43

共 6 頁之第 2 頁

/ **		
(d)	organic	2010
(11)	Organic	aulu

- 10. The molecular formula of calcium phosphate is:
 - (a) Ca₃P₂
 - (b) CaPO₃
 - (c) Ca3(PO4)2
 - (d) Ca2(PO4)3
- 11. The compound 2-chloro-1-pentene
 - (a) has the formula C₅H₁₁Cl.
 - (b) cannot exist as cis and trans isomers.
 - (c) can exist as cis and trans isomers.
 - (d) has 3 structural isomers.
- 12. Which of the following substances has the highest boiling point?
 - (a) C_2H_6
 - (b) Ar
 - (c) CH₂Cl₂
 - (d) HF
- 13. Which one of the following elements would have the lowest melting point?
 - (a) Kr
- (b) Ca
- (c) K
- (d) Br₂
- 14. Which one of the following is not a redox reaction?
 - (a) $AI(OH)_4(aq) + 4H^+(aq) \rightarrow AI^{3+}(aq) + 4H_2O(I)$
 - (b) $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$
 - (c) Na₆FeCl₈(s) + 2Na(l) \rightarrow 8NaCl(s) + Fe(s)
 - (d) $2H_2O_2(aq) \to 2H_2O(l) + O_2(g)$
- 15. Complete and balance the following redox equation. What is the coefficient of H₂O when the equation is balanced with the set of smallest whole numbers?

$$MnO_4^- + SO_3^{2-} \rightarrow Mn^{2+} + SO_4^{2-}$$
 (acidic solution)

- (a) 3
- (b) 4
- (c) 5
- (d) 8
- 16. The conjugate acid of sodium acetate (Na⁺CH₃COO⁻) is:
 - (a) NaOH
 - (b) CH₃COOH
 - (c) HCl
 - (d) K+CH3COO
- 17. Which of the following aqueous solutions has the lowest freezing point?

題號	:	43			1 1 >	.,,,,,_,	題號:	43
		普通	化學(C)				共 6	頁之第
	******			3				
			(a) 0.18 m k		(b) 0.15 m N			
			(c) 0.12 m (Ca(NO ₃) ₂	(d) 0.20 m C	₆ H ₁₂ O ₆ (glucose)		
		18.	If solutions	of equal molar	ity concentration	are prepared, the one	with the highes	st electrical
		10.	conductivity			are prepared, are one	with the ingree	
			(a) [Pt(NH ₃					
			(b) [Co(H ₂ (
			(c) K ₃ [CoC					
			5.5	I ₃) ₅ Cl]Cl ₂	1128/			
			- 10 A AE 45					
		19.				n. This complex is:		
		(a)	•	ic, with 1 unpaired		- 35. IS		
		(b)	-	ic, with 3 unpaired		1 1/1		
		(c)		ic, with 4 unpaired	l electrons.	# 1		
		(d)	diamagnetic	9 pt. /			III	
		20	What is the	maximum number	r of electrons in	an atom that can have t	he following set	of quantum
		20.	numbers?	$n = 4 \qquad l = 3$		=+1/2		
			(a) 0	(b) 1	(c) 2	(d) 32	• 5	
		0.1	XXII : 1 C.1	C.U		lianes		
		21.		following substar			MAP 6	
			(a) CH ₃ COO		(b) CH ₃ CH=(
			(c) $[Pt(NH_3)]$	2C12]	(d) [Co(en) ₃](13	N	
		22.	Which spec	ies listed below is	present in greates	t concentration in a 1.0 M	solution of NH ₄ N	√O3?
			(a) NH_4^+	(b) NO ₃	(c) HNO ₃	(d) NH ₃		
					350			
		23.	The unit of f	first order rate con	stant is	7616161		*
			(a) M/s	(b) 1/(M.s)	(c) 1/s	(d) $1/(M^2.s)$		
		24	Which of the	following stateme	ente je FAI SF9			
		24.				forward and reverse re	actions go to zer	ro once the
				, - ,	the rates of the	Torward and Teverse re	actions go to zer	o once me
				ım is reached.	rates of both the t	forward and reverse reacti	one	
						forward and reverse reacti g of concentration vs. tim		with a clone
			equal to		piot of flatural to	g of concentration vs. thi	ie provides a mie	with a stope
				ive decay is a first	order reaction.			
			n) 2.0				*** **	
		25.	277.5	nd to be largest for	r:			
			(a) conduct	ors				
			(b) semicor	ductors				

見背面

題號:	43 普通化學(C)	題號: 43 共 6 頁之第 4
	百世10字(0)	六 0 八 元
21		
	(c) insulators	
	(d) modulators	
	26. "Doping" pure silicon with gallium results in a material.	
	(a) p-type	
	(b) n-type	
	(c) s-type	
	(d) d-type	at the state of th
	27. At equilibrium ΔG is:	
	(a) = 0	
	(b) > 0	
	(c) < 0	
	(d) can not be determined	
	28. A chemical reaction that transfers heat from the system (the reaction) to the surroun	dings is always:
	(a) exothermic (b) endothermic (c) spontaneous (d) irreversible	
	29. Balance the following equation:	
	CH ₃ OH (I) + $O_{2(g)} \rightarrow CO_{2(g)} + H_{2}O_{(I)}$.	20 moles of ovegen?
	How many moles of water are produced in a reaction of 15 moles of methanol with	noies of oxygen.
	(a) 20	
	(b) 30	
	(c) 40	
	(d) 50	
	30. Under constant volume conditions, the change in internal energy equals the:	
	(a) entropy	φ.
	(b) insulation capacity	
	(c) transduction	
	(d) heat flow	
	31. What is the molar solubility of CaF_2 (Ksp = 3.9 x 10 ⁻¹¹)?	
	(a) $6.24 \times 10^{-6} M$ (b) $4.41 \times 10^{-6} M$	
	(c) $2.14 \times 10^{-4} \text{ M}$ (d) $9.27 \times 10^{-5} \text{ M}$	
	32. A 2.0 L vessel is filled with 7.3 x 10 ⁻² mol hydrogen at 1.55 atm. What is the temper	ature of this gas?
	(a) 520 K	
	(b) 640 K	
	(c) 1200 K	
	(d) 2800 K	
1		

接次頁

題號: 43

科目:普通化學(C)

題號: 43

共 6 頁之第 6 頁

33. The Haber process is used to synthesize ammonia from hydrogen and nitrogen. How much hydrogen is required to produce 42.8 kg of ammonia?

- (a) 56.02 kg
- (b) 42.8 kg
- (c) 35.25 kg
- (d) 7.60 kg

34. If silver atoms follow a face-centered cubic unit cell pattern, what is the length of this unit cell if the atomic radius is 144.4 pm?

(a) 144 pm

(b) 179 pm

(c) 408 pm

(d) 635 pm

35. How many grams of silver are deposited at a platinum cathode in the electrolysis of AgNO_{3 (aq)} by 5.30 amps of electric current in 4.0 hours?

- (a) 85.3 g
- (b) 42.6 g
- (c) 121 g
- (d) 188 g

36. The production of nitric oxide is governed by the reaction:

 $4 \text{ NH}_{3 (g)} + 5 \text{ O}_{2 (g)} \rightarrow 4 \text{ NO }_{(g)} + 6 \text{ H}_{2}\text{O}_{(g)}$

If the rate at which oxygen is consumed is 8.29 x 10⁻³ mol L⁻¹s⁻¹, at what rate is NO produced?

- (a) $8.29 \times 10^{-3} \text{ mol L}^{-1} \text{s}^{-1}$
- (b) $1.04 \times 10^{-2} \text{ mol L}^{-1} \text{s}^{-1}$
- (c) $6.63 \times 10^{-3} \text{ mol L}^{-1} \text{s}^{-1}$
- (d) $5.53 \times 10^{-3} \text{ mol L}^{-1} \text{s}^{-1}$

37. A radioisotope decays at such a rate after 72.0 min only 1/16 of the original amount remains. Which of the following statements are TRUE?

- (a) The half-life of this nuclide is 9 min.
- (b) After another 108 min, only 1/1024 of the original amount remains.
- (c) The decay rate will change with the solvents used to dissolved the salts of radioisotope.
- (d) The decay constant is 0.0385 min⁻¹.

38. Consider the reaction of carbon monoxide with oxygen to produce carbon dioxide.

 $2 \text{ CO} (g) + \text{O}_2(g) \rightarrow 2 \text{ CO}_2(g)$

At what temperature will this reaction be spontaneous according to Gibb's Energy?

 ΔH_f in kJ/mol for: CO (g) = -110.5, CO₂ (g) = -393.5

S in J/mol K for: CO (g) = 197.6, CO₂ (g) = 213.6, O₂ (g) = 205.0

- (a) temps above 63.1 K
- (b) temps below 179.5 K
- (c) temps above 415.8 K

題號: 43

科目:普通化學(C)

題號: 43

共 6 頁之第 6 頁

(d) temps below 3273 K

- 39. Breaking the oxygen-oxygen bond in hydrogen peroxide requires 210 kJ/mol. What is the longest wavelength of light that can cause this bond to be broken?
 - (a) 5.7×10^{-4} m
 - (b) $9.5 \times 10^{-31} \text{ m}$
 - (c) 2.8×10^{-7} m
 - (d) 9.5×10^{-28} m
- 40. In an electron microscope, electrons are accelerated to great velocities. Calculate the wavelength of an electron traveling with a velocity of 7.0×10^3 kilometers per second. The mass of an electron is 9.1×10^{-28} g.
 - (a) 1.0×10^{-13} m
 - (b) 1.0×10^{-7} m
 - (c) 1.0 m
 - (d) 1.0×10^{-10} m

Useful informations:

gas constant, R = 0.08206 atm L mol⁻¹K⁻¹ = 8.314 J mol⁻¹K⁻¹

Faraday constant $F = 9.6485 \times 10^4 \text{ C.mol}^{-1}$

Planck's constant, $h = 6.626 \times 10^{-34} \text{ J.s} = 6.626 \times 10^{-27} \text{ erg.s}$

Speed of light, $c = 2.9979 \times 10^8 \text{ m s}^{-1}$

 $m_e = 9.11 \times 10^{-28} \text{ g}, e = 1.60 \times 10^{-19} \text{ C}$

1 joule (J) = 1 kg m² s⁻² = 1 C·V (coulomb·volt)

Atomic mass: H=1.01 He=4.00 C=12.01 N=14.01 O=16.00 Ag=107.9