題號: 96

國立臺灣大學 110 學年度碩士班招生考試試題

科目:微分方程

節次: 2

題號: 96 共 / 頁之第 / 頁

※ 注意:請於試卷內之「非選擇題作答區」標明題號依序作答。

Ordinary Differential Equations

1. Set

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \tag{0.1}$$

and $X(t) = (x_1(t), x_2(t))^T$.

- (a) (10 points) Calculate $e^{tA}:=I+\sum_{j=1}^{\infty}\frac{1}{j!}t^{j}A^{j}$, where I is the two by two identity matrix.
- (b) (10 points) Solve the differential system

$$\begin{cases} x_1'(t) = x_1(t) + x_2(t) + e^t, \\ x_2'(t) = 2x_2(t), \end{cases}$$
 (0.2)

with initial condition $X(0) = (1,0)^T$.

2. (20 points) Solve the differential equation

$$x'''(t) + x''(t) - 16x'(t) - 16x(t) = 0,$$

with initial condition x(0) = x'(0) = 0, x''(0) = 1.

3. (20 points) Solve the differential equation

$$x'(t) + \cos tx(t) = \cos t \tag{0.3}$$

with initial condition x(0) = 0.

4. Consider the differential equation

$$x'(t) + 2x(t) = \sin t. \tag{0.4}$$

Let $\phi(t)$ be the periodic solution of (0.4).

- (a) (10 points) Find the value of $\phi(\pi)$.
- (b) (10 points) Let X(t) be any other solution of (0.4). Show that

$$\lim_{t \to \infty} |X(t) - \phi(t)| = 0.$$

5. (20 points) Solve the differential equation

$$t^2y''(t) + ty'(t) - y(t) = 0$$

for $t \ge 1$ with y(1) = 2 and y'(1) = 0.

試題隨卷繳回