國立臺灣大學 110 學年度碩士班招生考試試題

題號: 409 科目:電子學(E)

題號: 409

共 2 頁之第 1

科目:電子學(E) 節次: 4

1. (15%) Please analyze the operational circuit shown as Figure 1. Find the output current i_{out} as a function of v_{in} .

- 2. (20%) Please analyze the BJT circuit shown in Figure 2. The circuit parameters can be given as V_{CC} = 20 V; R_B = 200 k Ω ; R_{CI} = 10 k Ω ; R_{E1} = 1 k Ω ; R_{E2} = 8 k Ω and β = 50
 - (a) (10%) Please find the DC biased current at the collector of Q1 and Q2.
 - (b) (10%) Please find the small-signal gain of v_o/v_i .
- 3. (15%) Please analyze the MOSFET circuit shown as Figure 3. Assume all circuit are properly biased and operated in saturation region. Assume the transconductance of NMOS is $g_{m,N}$ and the transconductance of PMOS is $g_{m,P}$. And there is the same finite output resistance (r₀) of these MOSFETs.
 - (a) (3%) Please write down the topology of the MOSFET amplifier of each circuit
 - (b) (4%) Please derive the small-signal gain of Fig. 3(a)
 - (c) (4%) Please derive the small-signal gain of Fig. 3(b)
 - (d) (4%) Please derive the small-signal gain of Fig. 3(c)

Figure 3

見背面

題號: 409

國立臺灣大學 110 學年度碩士班招生考試試題

科目:電子學(E) 節次: 4

題號: 409

共 2 頁之第 2 頁

4. (15%) For a static four-input NAND gate with $L = 0.18 \mu m$, all transistor sizes are chosen to match the delay of a basic CMOS inverter with $(W/L)_n = n$ and $(W/L)_p = p$.

- (a) (5%) Please sketch the CMOS circuit for a static four-input NAND gate.
- (b) (6%) For a static four-input NAND gate with n = 1.5 and p = 3, please give the sizes (W/L) of all transistors.
- (c) (4%) For the static four-input NAND gate, find the ratio of the maximum to minimum current available to (a) charge a load capacitance and (b) discharge a load capacitance.
- 5. (25%) Design the circuit in Figure 4 to obtain a dc voltage of +0.1 V at each of the drains of Q_1 and Q_2 when $v_{G1} = v_{G2} = 0$ V. Operate all transistors at $V_{OV} = 0.15$ V and assume that for the process technology in which the circuit is fabricated, $V_{tn} = 0.4$ V and $\mu_n C_{OX} = 400 \,\mu\text{A/V}^2$. Neglect channel-length modulation.
 - (a) (4%) Determine the value of R_D .
 - (b) (12%) Determine the W/L ratios of Q_1, Q_2, Q_3 , and Q_4 .
 - (c) (4%) Determine the value of R.
 - (d) (5%) What are the lower and upper limits of the input common-mode voltages?

Figure 4 Figure 5

6. (10%) Before the read operation, both bit lines (BL and BLB) are precharged to V_{DD} . Find the maximum allowable (W/L)_a for the access transistors of the SRAM cell shown in Figure 5 so that in a read operation, the voltages at Q and \overline{Q} do not change by more than a threshold voltage $|V_t|$. Assume that the SRAM is fabricated in a 0.18 μ m technology for which $V_{DD}=1.8$ V, $V_{tn}=|V_{tp}|=0.5$ V and that (W/L)_n = 1.5 for pull-down devices.

試題隨卷繳回