國立臺灣大學 108 學年度碩士班招生考試試題

424 電子學(E)

節次: 共 2 頁之第 1 頁

1. Consider an imperfect Miller integrator shown in Fig. 1. Let $R = 10 \text{ k}\Omega$, $R_F = 1 \text{ M}\Omega$, and C = 10 nF. Assume the OP-Amp saturates at ± 15 V.

- (a) Please draw the frequency response of this circuit. Label the dc gain, slope, corner frequency, and unity-gain frequency on the figure to justify your plot. (7 %)
- (b) If $v_I(t)$ is a step function of 0.5-V height starting from t=0, please draw the output waveform $v_O(t)$. Label the time constant and important time/values on the figure to justify your plot. (8 %)
- 2. Consider the circuit shown in Fig. 2. Assume all diodes have a constant 0.7-V voltage drop when conducting. The Zener diode has the zener voltage of 6.7 V with a negligibly small value of r_z . Please sketch the transfer characteristic (v_0 vs. v_I) of the circuit for $-15 \text{ V} \le v_I \le +15 \text{ V}$. Label clearly the operating condition of each diode on your figure to justify your plot. (10 %)
- 3. Please draw the characteristics of I_{DS} vs. V_{DS} and I_{DS} vs. V_{GS} of an enhancement-mode n-channel MOSFET under the following situations.
 - (a) Increase the gate oxide thickness. (4 %)
 - (b) Increase the ambient temperature. (4 %)
 - (c) What can you do to "reverse" the situation/trend in (a) and (b)? Explain clearly the condition you plan to apply or adjust and the physics behind it. (7 %)
- 4. The MOSFET in the amplifier circuit of Fig. 3 has $V_t = 0.6 \text{ V}$, $k_n = 5 \text{ mA/V}^2$, and $V_A = 60 \text{ V}$. The signal v_{sig} has a zero average.
 - (a) What is the value of the drain resistance R_D so that the transistor is operated at an overdrive $V_{OV} = 0.2 \text{ V}$? You need to consider V_A when calculating the dc drain I_D . (5 %)
 - (b) Calculate the values of g_m and r_o at the bias point established in (a). (4 %)
 - (c) Find the voltage gain v_o/v_{sig} . (6%)
- 5. Design the double-cascode current source shown in Fig. 4 to provide I = 0.2 mA and the largest possible signal swing at the output. Assume the transistor has $V_{tp} = -0.4 V$, $V_A' = -6 V/\mu m$, $L = 0.4 \mu m$, and $\mu_p C_{ox} = 100 \mu A/V^2$ and operate at $|V_{OV}| = 0.2 \text{ V}$. Specify V_{G1} , V_{G2} , V_{G3} , and the W/L ratios of the transistors. What is the value of R_o achieved? (10) %)

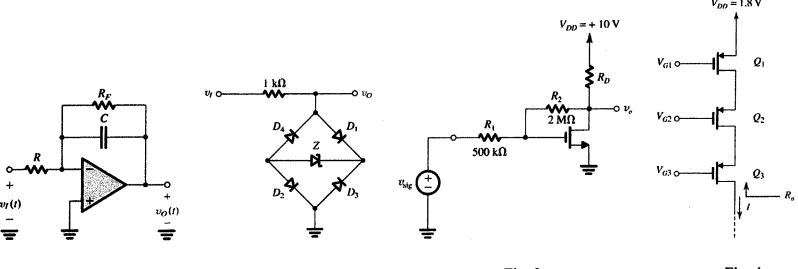


Fig. 1

Fig. 2

Fig. 3

Fig. 4

題號: 424

424

國立臺灣大學 108 學年度碩士班招生考試試題

電子學(E)

節次: 共2頁之第2頁

6. The circuit of current-mirror-loaded MOS differential pair is shown in Fig. 5. The output can be expressed as an equivalent circuit using $G_m \equiv \frac{i_0}{v_{id}}$ (short-circuit transconductance,), v_{id} (differential input at v_{G1} and v_{G2}), and R_0 (output resistance).

- (a) Please derive the expression of G_m and R_o . (10%)
- (b) Please derive the open-circuit differential voltage gain $A_d \equiv \frac{v_0}{v_{id}}$. (5 %)
- 7. Sketch a CMOS logic circuit that realizes the function $Y = AB + \overline{AB}$. (10%)
- 8. Assume the manufacturing technology for 6T SRAM can reduce the bit cell area to 0.04 $\,\mu m^2$. Please estimate the required area of a 1-Gbit memory chip given that the peripheral and I/O circuits will take about 50 % of your memory area. (10 %)

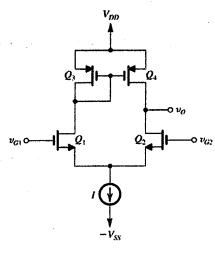


Fig. 5

試題隨卷繳回