題號: 434 國立臺灣大學 103 學年度碩士班招生考試試題

科目:電子學(E)

行日・电丁字(C) 節次: 7 題號: 434

共 2 頁之第 / 頁

Multiple choice questions (20%)

- 1. Which of the following statements are right?
 - (a) A conduction band means a set of available energy states for free electrons in free space;
 - (b) The effective mass of a carrier can be estimated from its wave function;
 - (c) The hole is the empty state providing a positive electronic charge. Therefore, it is boson particle;
 - (d) The carrier concentration can be determined by the density of states and the Fermi-Dirac distribution function;
 - (e) The intrinsic Fermi-level position of silicon must be at the center level of its bandgap.
- 2. Which of the following statements are right?
 - (a) The completely ionized assumption of dopants is based on operating under the condition of room temperature;
 - (b) If the doping concentration is similar as the intrinsic carrier concentration, the majority carrier concentration can be equal to the donor impurity concentration;
 - (c) The drift current will usually be due to the majority carrier in an extrinsic semiconductor;
 - (d) MOSFET is a device operated with majority carriers;
 - (e) To have a strong diffusion current density, the doping concentration of a semiconductor should be as higher as possible.
- 3. Which of the following statements are right?
 - (a) The excess carrier of a semiconductor can be introduced by magnetic field or force field;
 - (b) At steady-state of a semiconductor, the generation rate is equal to the recombination rate;
 - (c) In N-type semiconductor, the electron recombination rate is higher than the hole recombination rate;
 - (d) In an extrinsic semiconductor, all the excess carriers move with a single effective mobility or diffusion coefficient;
 - (e) The excess carriers recombine at the rate of the excess minority carrier lifetime.
- 4. For a semiconductor device, which of the following statements are right?
 - (a) In reverse biased region, both junction capacitance and diffusion capacitance contribute to the small-signal equivalent model of a PN junction;
 - (b) In a PN junction, the generation current is the dominant reverse-bias current;
 - (c) The BJT current is major due to the carrier diffusion;
 - (d) The cause of early voltage of both MOSFET and BJT are the same;
 - (e) To have a good transconductance, in general, BJT is better than MOSFET

Short Answer Question

- 5. Please briefly explain the difference between Fermi-Dirac probability function and Maxwell-Boltzmann probability function. (4%)
- 6. Please schematically draw the current components in a BJT operating at forward-active region. (6%)

題號: 434

國立臺灣大學 103 學年度碩士班招生考試試題

科目:電子學(E)

節次: 7

共 2 頁之第 2.

Calculations

7. The circuit parameters are given as:

 V_{CC} = 20 V, R_1 = 10 k Ω , R_2 = 1 k Ω , R_3 = 200 k Ω , R_4 = 8 k Ω , and β = 50.

- (a) Based on dc analysis, find the values of I_{C1} and I_{C2} . (10%)
- (b) What is the small-signal gain of v_o/v_i ? (10%)

- 8. An amplifier having a low-frequency gain of 10³ and poles at 10⁴ Hz and 10⁶ Hz is operated in a closed negative-feedback loop with a frequency- independent β (feedback factor).
- (a) For what value of β do the closed-loop poles become coincident? At what frequency? (10%)
- (b) What is the low-frequency gain corresponding to the situation in (a)? What is the value of the closed-loop gain at the frequency of the coincident poles? (10%)
- (c) If β is increased by a factor of 10, what are the new pole locations? (10%)
- 9. Assume that the BJTs in the following circuit are matched and have a current gain α . Derive the expression for the small-signal voltage gain V_o/V_t of the circuit in two different ways:
- (a) as a differential amplifier. (10%)
- (b) as a cascade of a common-collector stage Q_1 and a common-base stage Q_2 . (10%)

