題號: 356

國立臺灣大學 103 學年度碩士班招生考試試題

科目:計算機概論(D)

題號: 356

共 2 頁之第 / 頁

1. Using 4 bits and two's complement representation, what is the binary representation of the following signed decimal values:

- (1). +8 (5%)
- (2). -5 (5%)
- 2. For the following number list, perform a bubble sort, and show the list after each exchange. (10%)

15	3 6	9	1	5	7

3. Assume that a hard disk has the following characteristics:

Rotation speed = 7,200 rev/min

Arm movement time = 0.5 msec fixed startup time + 0.05 msec for each track crossed.

(The startup time is a constant no matter how far the arm moves.)

Number of surfaces = 2 (This is a double-sided disk. A single read/write arm holds both read/write heads.)

Number of tracks per surface = 500

Number of sectors per track = 20

Number of characters per sector = 1,024

- (1). How many characters can be stored on this disk? (5%)
- (2). What are the best-case, worst-case, and average-case access times for this disk? (5%)
- 4. Consider the following structure of the instruction register.

op code	address-1	address-2	
6 bits	12 bits	12 bits	

- (1). What is the maximum number of distinct operation codes that can be recognized and executed by the processor on this machine? (3%)
- (2). What is the maximum memory size on this machine? (3%)
- (3). How many bytes are required for each operation? (4%)
- 5. Using the public key RSA encryption algorithm, let p = 3 and q = 5. Then n = 15 and m = 8. Let e = 11.
 - (1). Compute d. (2%)
 - (2). Find the code for 3. (4%)
 - (3). Decode your answer to part (2) to retrieve the 3. (4%)

題號: 356 國立臺灣大學 103 學年度碩士班招生考試試題

科目:計算機概論(D)

題號: 356

共 2 頁之第 2 頁

6. Using the parsing expression grammar of the following figure, show the parse tree for the below assignment statement. (10%)

$$x = x + y + z$$

Number	Rule	
1	<pre><assignment statement=""> ::= <variable> = <expression></expression></variable></assignment></pre>	
2	<pre><expression> ::= <variable> <expression> + <variable></variable></expression></variable></expression></pre>	
3	<variable> ::= x y z</variable>	

7. Build and draw a circuit using AND, OR, and NOT gates to implement the following truth table.

This operation is termed NAND, for Not AND, and it can be constructed as a single gate.

Assume that you do not have access to a NAND gate and must construct it from AND, OR, and NOT gates. (10%)

а	b	Output
0	0	1
0	1	1
1 =	0	1
1	701	0

8. Consider the following graph:

- (1). Draw a tree showing all paths from A and highlighting those that are Hamiltonian circuits. (5%)
- (2). How many paths have to be examined? (5%)
- 9. Write an assembly language program to find the factorial of number 10. (10%)
- 10. Write a simple program function for linear search in any high-level programming language. Wrap a main program to search an element in an integer array using the linear search function. (10%).

試題隨卷繳回