題號: 245 國立臺灣大學 103 學年度碩士班招生考試試題

科目:輸送現象及單元操作

5 現 条 及 平 元 探 作 題 競: 245 共 4 頁 2 第 1 頁

Problem 1 (6 points)

An engineer want to know the pressure information of the following flow system using the two manometers indicated in **Figure 1**. What are the static pressure, dynamic pressure and total pressure? (The pressure difference between the two insertion points is negligible.)

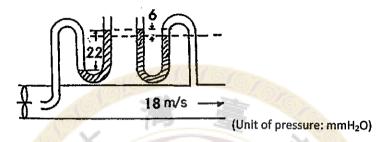


Figure 1 Measurement of static and dynamic pressures in a wind pipe.

Problem 2 (14 points)

In a process for removing SO₂ from flue gas, gas at 410°C and 1.2 atm is passed upward through a fluidized bed containing 1.5 mm spherical particles of Al₂O₃ impregnated with copper. The particle density is 2,300 kg/m³ and the gas density and viscosity are almost the same as those of the air.

- (a). For an initial bed height of 1 m and an initial porosity of 0.45, predict the minimum fluidization velocity.

 (7 points)
- (b). If the expanded bed height should be no greater than 2 m, what is the upper limit of the operating superficial velocity? (7 points)

[Hint 1]: Pressure drop across particulate bed:

$$\frac{\Delta P}{L} = \frac{150 \mu u_s}{\phi_s^2 D_p^2} \frac{(1-\varepsilon)^2}{\varepsilon^3} + \frac{1.75 \rho_f u_s^2}{\phi_s D_p} \frac{1-\varepsilon}{\varepsilon^3}$$

Problem 3 (14 points)

A $1\frac{1}{4}$ in. steel pipe (schedule 40) is insulated with a 2 inch layer of asbestos covered by a 3 inch layer of 85% magnesia. If the temperature inside the pipe wall is 300 °F and the atmospheric temperature is 80 °F. The thermal conductivities of steel, asbestos and magnesia are 26, 0.087 and 0.034 (Btu/hr/ft/°F), respectively.

- (a) What is the heat loss per foot of pipe? (7 points)
- (b) What is the temperature between the two insulations? (7 points)

題號: 245

國立臺灣大學103學年度碩士班招生考試試題

科目:輸送現象及單元操作

題號:245

共 4 頁之第 2 頁

節次: 8

Problem 4 (16 points)

The following Hagen-Poiseuille equation expresses the mass flow rate W of a fluid flowing through a horizontal capillary circular pipe (radius R; length L) as a function of the applied pressure ΔP .

$$W = \frac{\pi R^4 \rho}{8 \mu L} \Delta P$$

A fluid (density ρ ; viscosity μ) is flowing in laminar flow from A to B through a network of tubes, as depicted in Figures 2.

- (a) Derive Hagen-Poiseuille type expression for the mass flow rate W of the fluid from A to B through the network as a function of the applied pressure ΔP. The derivation of well-known Hagen-Poiseuille equation is not necessary. Neglect the disturbances at the various tube junctions and gravity effect. (12 points)
- (b) Determine the mass flow rate for the network with a radius of 1.1R under the same applied pressure, *i.e.*, how many percent of the mass flow rate will be increased if the radius of tube is increased from R to 1.1R for the same network under the same applied pressure. (4 points)

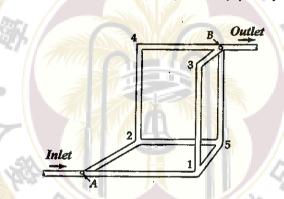


Figure 2 Flow of a fluid in a network of tubes with branching.

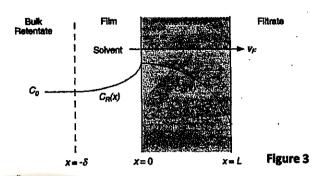
Problem 5 (25 points)

A distillation column is to be fed with two streams of saturated liquid containing A and B. Feed 1, the upper feed, is supplied at 1 kg mol/hr and the mol fraction of A is 0.7. Feed 2, the lower feed, is also fed at 1 kg mol/hr and the mol fraction of A is 0.3. In the bottom product, the mol fraction of A cannot be more than 0.05, and 95% of A fed to the column leaves from the distillate stream. A vapor-liquid phase equilibrium data of the binary system is shown in Table 1. Please answer the following questions.

Table 1											
X _A	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
YA	0	0.25	0.45	0.55	0.65	0.75	0.83	0.9	0.95	0.98	1

- (a) What is the minimum number of equilibrium stages? (5 points)
- (b) What is the minimum reflux ratio? (5 points)
- (c) Please describe (or illustrate) how the size of reflux ratio can influence the capital cost and operating cost. (5 points)
- (d) For a reflux ratio of 2/3, how many equilibrium stages are needed and on what stages should Feed 1 and Feed 2 be introduced to the column? (10 points)

接次頁


題號: 245 國立臺灣大學103學年度碩士班招生考試試題

科目:輸送現象及單元操作

題號:245 節次: 頁之第 3

Problem 6 (12 points)

Ultrafiltration is a process in which pressure-driven flow of filtrate across a semipermeable membrane. An undesired consequence of the filtration is that the retained macromolecules accumulate near the upstream surface of the membrane, causing membrane fouling, as shown in Figure 3. At steady state, the solute concentration in the retentate film $C_R(x)$ is

assumed to reach the bulk value C_0 at a distance δ from the membrane. The solute concentration in the membrane is $C_M(x)$. The diffusivities in the retentate film and in the membrane are D_R and D_F , respectively. The steady state filtrate velocity is v_F, and steady state solute flux is N. Due to the interaction of the solute and the membrane, the solute flux inside the membrane region has a form different from a regular form and is expressed as:

$$-D_M \frac{dC_M}{dx} + 0.5 v_F C_M$$

- (a) Derive $C_R(x)$ as a function of the given bold parameters. (5 points)
- (b) Derive $C_M(x)$ as a function of the given bold parameters. (7 points)

Problem 7 (13 points)

Two perfectly mixed tanks are separated by a membrane with a thickness of L as shown in Figure 4(a). The volume of each tank is V and the exposed area of the membrane is A. The solute concentration and diffusivity within the membrane are C(x,t) and D respectively. The two tanks are originally full of pure water, and have no solute. At t=0, the solute concentration in the left tank is suddenly changed to C_0 . In the very early time period, the solute concentration profile change in the membrane is illustrated in Figure 4(b). In the much larger time scale, the concentration profile is illustrated in Figure 4(c).

- (a) What is the criterion of time for us to observe the situation in the very early time period (as shown in Figure 4(b))? (5 points)
- (b) In the much larger time scale, if assuming pseudo-steady state, please derive how the concentration in the left tank changes with time? (8 points)

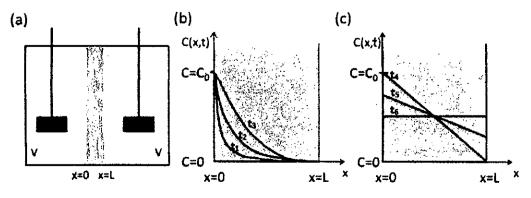


Figure 4

題號: 245 國立臺灣大學103學年度碩士班招生考試試題

科目:輸送現象及單元操作

節次: 8

題號:245

共 4 頁之第 4 頁

Table A-1 Dimensions and Capacities of Standard Steel Pipes

Nominal pipe size, in.	Outside diameter, in.	Schedule	Wall thickness, in,	Inside diameter, in.	Cross- sectional area of metal, in.2	Inside sectional area, ft ²	Circumference, ft or surface,		Capacity at 1 ft/s velocity	
							ft ² /ft of length		U.S.	Water,
							Outside	Inside	gal/min	IP√p
8	0.405	40	800,0	0.269	0.072	0.00040	0.106	0.0705	0.179	89.
		80	0.095	0.215	0.093	0.00025	0.106	0.0563	0.113	56.
*	0.540	40	0.088	0.364	0.125	0.00072	0.141	0.095	0.323	161.
		80	0.119	0.302	0.157	0.00050	0.141	0.079	0.224	112.
1	0.675	40	0.091	0.493	0.167	0.00133	0.177	0.129	0.596	298.
		80	0.126	0.423	0.217	0.00098	0.177	0.111	0.440	220.
ł	0.840	40	0.109	0.622	0.250	0.00211	0.220	0.163	0.945	472.
		80	0.147	0.546	0.320	0.00163	0.220	0.143	0.730	365.
*	1.050	40	0.113	0.824	0.333	0.00371	0.275	0.216	1.665	832.
	LOS.	80	0.154	0.742	0.433	0.00300	0.275	0.194	1.345	672.
I	1.315	40	0.133	1.049	0.494	0.00600	0.344	0.275	2.690	1,345
		80	0.179	0.957	0.639	0.00499	0.344	0.250	2.240	1,120
块	1.660	40	0.140	1.380	0.668	0.01040	0.435	0.361	4.57	2,285
		80	0.191	1.278	0.881	0.00891	0.435	0.335	3.99	1,995
l]	1.900	40	0.145	1.610	0.800	0.01414	0.497	0.421	6.34	3,170
		80	0.200	1.500	1.069	0.01225	0.497	0.393	5.49	2,745
2	2.375	40	0.154	2.067	1.075	0.02330	0.622	0.543	10.45	5,225
		80	0.218	1.939	1.477	0.02050	0.622	0.508	9.20	4,600
2 <u>+</u>	2.875	40	0.203	2.469	1.704	0.03322	0.753	0.647	14.92	7,460
•		80	0.276	2.323	2.254	0.02942	0.753	0.608	13.20	6,600
3	3.500	40	0.216	3.068	2.228	0.05130	0.916	0.803	23.00	11,500
	•	80	0.300	2.900	3.016	0.04587	0.916	0.759	20.55	10,275
31	4.000	40	0.226	3.548	2.680	0.06870	1.047	0.929	30.80	15,400
		80	0.318	3,364	3.678	0.06170	1.047	0.881	27.70	13,850
4	4.500	40	0.237	4.026	3.17	0.08840	1.178	1.054	39.6	19,800
		80	0.337	3.826	4.41	0.07986	1.178	1.002	35.8	17,900
5	5.563	40	0.258	5.047	4.30	0.1390	1.456	1.321	62.3	31,150
		80	0.375	4.813	6.11	0.1263	1.456	1.260	57.7	28,850
6	6.625	40	0.280	6.065	5.58	0.2006	1.734	1.588	90.0	45,000
		80	0.432	5.761	8.40	0.1810	1.734	1.508	81.J	40,550
8	8,625	40	0.322	7.981	8.396	0.3474	2.258	2.089	155.7	77,850
		80	0.500	7.625	12.76	0.3171	2.258	1.996	142.3	71,150
10	10.75	40	0.365	10.020	11.91	0.5475	2.814	2.620	246.0	123,000
		80	0.594	9.562	18.95	0.4987	2.814	2.503	223.4	111,700
12	12.75	40	0.406	11.938	15.74	0.7773	3.338	3.13	349.0	174,500
	*****	80	0.688	11.374	26.07	0.7056	3.338	2.98	316.7	158,350