題號: 411 國立臺灣大學 102 學年度碩士班招生考試試題

科目:電子學(C)

節次: 8

題號: 411 共 2 百夕第 1 百

※ 注意;請於試卷上「非選擇題作答區」內依序作答,並應註明作答之大題及其題號

第一部分為選擇題,答案可能不只一個,需全對才給分。共10題,每題5分。

- 1. Please select the correct one(s) about the characteristics of the ideal Op amp.
 - (A) Infinite input impedance
 - (B) Infinite output impedance
 - (C) Infinite common-mode gain
 - (D) Infinite closed-loop gain
 - (E) Infinite bandwidth
- 2. Please select the correct one(s) about the characteristics of a real silicon diode.
 - (A) As temperature increases, the voltage required to maintain a constant current will also increase.
 - (B) As temperature increases, the saturation current will also increase.
 - (C) A diode in reverse biased can be used for voltage regulation.
 - (D) A diode in reverse biased will not conduct any current.
 - (E) The larger the size, the higher the saturation current.
- 3. Please select the correct one(s) about the characteristics of an npn silicon BJT.
 - (A) The current is mainly composed of electron drift current under base-emitter junction forward bias.
 - (B) The current gain β in active mode operation is smaller than the β in saturation mode operation.
 - (C) The common-base configuration has better high-frequency response than the common-emitter one.
 - (D) If we consider Early effect, the small-signal gain will decrease.
 - (E) Breakdown voltage BVCBO is usually half BVCEO
- 4. Please select the correct one(s) about the characteristics of a silicon NMOS.
 - (A) The current is mainly composed of electron drift current under drain-source terminal forward bias.
 - (B) Increasing oxide thickness will cause the transconductance g_m to decrease.
 - (C) The Body effect will reduce threshold voltage and increase drain current.
 - (D) Including a resistor in the source lead of the common source stage can effectively increase gain.
 - (E) In general, an NMOS provides more gain compared to an npn BJT when applying in the amplifier design.
- 5. Please select the correct one(s) about the characteristics of different types of amplifiers.
 - (A) We stack a common-emitter transistor on top of a common-base transistor to raise the output resistance.
 - (B) A MOS cascode amplifier with a cascode current-source load achieves a gain of $(g_m r_a)^2$.
 - (C) The Widlar current source provides a way to implement a low-valued constant-current source that also has a high output resistance.
 - (D) In the MOS differential pair amplifier, to steer the current completely to one side of the pair, a difference input voltage of $2V_{OV}$ is needed.
 - (E) Differential amplifiers do not need bypass and coupling capacitors.
- 6. Consider a 10-output current mirror in Fig. 1. Assume that all transistor are matched and have finite $\beta=100$ and ignoring the effect of finite output resistances. If $I_{REF}=10$ mA. What is the value of I_{10} ?
 - (A) 7 mA (B) 8 mA (C) 9 mA (D) 10 mA (E) 11 mA

題號: 411

國立臺灣大學 102 學年度碩士班招生考試試題

科目:電子學(C)

杆日・電丁字(b) 節次: 8 題號: 411

共 3 頁之第 2 頁

- 7. Consider a CC-CE amplifier in Fig. 2. Assume $I_1=I_2=1\,$ mA, Q_1 and Q_2 are matched. $\beta=100,\ C_\pi=13.9\,$ pF. $C_\mu=2\,$ pF. Let the amplifier be fed with a source V_{sig} with $R_{sig}=4\,$ K Ω , and load resistance $R_L=4\,$ K Ω . Which RC delay term(s) may have more significant impacts on the determination of 3-dB frequency f_H ?
 - (A) $C_{\mu 1} R_{\mu 1}$ (B) $C_{\mu 2} R_{\mu 2}$ (C) $C_{\pi 1} R_{\pi 1}$ (D) $C_{\pi 2} R_{\pi 2}$ (E) $C_{\pi 1} R_{\mu 2}$
- 8. Please select the correct one(s) about the characteristics of a CMOS logic inverter.
 - (A) The basic building block of digital circuits.
 - (B) The static power dissipation is the result of current flow in either 0 or 1 state or both.
 - (C) The maximum frequency at which an inverter can be switched is related to its propagation delay by $f_{max} = 1/\sqrt{2}t_p$.
 - (D) Larger W/L ratios can result in a reduction in t_p .
 - (E) Pull-down network (PDN) comprises PMOS transistors.
- 9. Please select the correct one(s) about the properties of feedback amplifiers.
 - (A) To build a oscillator, we need to have a positive feedback network with $A\beta \ge 1$.
 - (B) The shunt-series feedback topology is best suited for voltage amplifiers.
 - (C) For the feedback amplifier to be stable, most of its poles must be in the left half of the s plane.
 - (D) A smaller pole Q factor will have a more flat and larger gain response.
 - (E) At frequency ω_{180} , unstable amplifiers have the magnitude of the loop gain greater than one.
- 10. Consider the CMOS realization of a logic gate in Fig. 3. What is the output Y?

(A)
$$\overline{A + B(C + D)}$$
 (B) $\overline{A + BCD}$ (C) $A(B + CD)$ (D) $\overline{A} + \overline{B + CD}$ (E) $A + \overline{(B + CD)}$

 $v_1 \circ v_2 \circ v_0$

Fig. 1 V_{DD} $A \circ \neg q \mid Q_{PR}$ $C \circ \neg q \mid Q_{PC} \mid Q_{PD}$ $A \circ \neg q \mid Q_{NC} \mid Q_{NC}$ $A \circ \neg q \mid Q_{NC} \mid Q_{NC}$ $A \circ \neg q \mid Q_{NC} \mid Q_{NC} \mid Q_{NC}$

Fig. 3

Fig. 2

題號: 411 國立臺灣大學 102 學年度碩士班招生考試試題

科目:電子學(C)

節次: 8

題號: 411

共 多 頁之第 3 頁

第二部分為簡答題,視答對程度部分給分。

- 11. Draw the time-dependent output waveforms of v_0, v_+, v_- in Fig. 4. Label correctly the corresponding periods, magnitudes, time constants in your plot using $T_1, T_2, L_+, L_-, R_1, R_2, R_3, C$. (10%)
- 12. For the circuit in Fig. 5. Assume all the transistors, including those that implement the current sources, are operating at equal overdrive voltages of 0.3 V magnitude and have $|V_t| = 0.7 V$. In order to operate properly, each of the current sources requires a minimum voltage of $|V_{OV}|$ across its terminals. What is the range over which <u>both</u> NMOS and PMOS input stages operate? (10%)
- 13. The circuit in Fig. 6 is considered an amplifier. Assume that $K_n=k_p=400~\mu\text{A/V}^2$, $V_{tn}=|V_{tp}|=1V$, $R_s=2.5~k\Omega$, $R_L=20~k\Omega$ and $R_G=100~M\Omega$.
 - (a) What is the dc current of the NMOS transistor? (5%)
 - (b) If $v_i(t) = 0.05\sin(300t)V$, find the output voltage $v_0(t)$. (10%)
- 14. Consider the CMOS op amp circuit in Fig. 7. $\mu_n C_{ox} = 3\mu_p C_{ox} = 90 \ \mu A/V^2$, $|V_t| = 0.7 \ V$, and $V_{DD} = V_{SS} = 2.5 \ V$. For a particular design $I = 100 \ \mu A$, $(W/L)_1 = (W/L)_2 = (W/L)_5 = 200$, and $(W/L)_3 = (W/L)_4 = 100$
 - (a) What is the transistor sizing constraint to eliminate dc offset? (5%)
 - (b) Find the (W/L) ratios of Q_6 and Q_7 so that $I_6 = 100 \mu A$ (5%)
 - (c) Find g_m for Q_1 and Q_6 (5%)

試題隨卷繳回