國立臺灣大學111學年度轉學生招生考試試題

題號: 48 科目:線性代數 題號: 48

共 | 頁之第 | 頁

※ 注意:請於試卷上「非選擇題作答區」標明大題及小題題號,並依序作答。

Notation: We denote by \mathbf{R} the set of real numbers. For any positive integer n, I_n is the identity matrix and 0_n is the zero matrix in $M_n(\mathbf{R})$.

Problem 1 (15pts). Let $T: \mathbf{R}^4 \to \mathbf{R}^3$ be the linear transformation defined by $T(v) = A \cdot v$, where

$$A = \begin{pmatrix} 3 & -5 & 1 & 1 \\ 1 & 5 & -1 & 3 \\ 2 & 0 & 0 & 2 \end{pmatrix} \in \mathcal{M}_{3\times 4}(\mathbf{R}).$$

- (1) (10pts) Find bases of Ker T (the kernel of T) and Im T (the image of T).
- (2) (5pts) Verify if the vector $\begin{pmatrix} -5\\5\\0 \end{pmatrix}$ belongs to Im T.

Problem 2 (25pts). Let

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 3 & -4 & 1 \\ 3 & -8 & 5 \end{pmatrix}.$$

(1) (15pts) Find an invertible matrix $Q \in M_3(\mathbf{R})$ such that

$$Q^{-1}AQ = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 12 \\ 0 & 1 & 1 \end{pmatrix}.$$

(2) (10pts) Find an invertible matrix $P \in M_3(\mathbf{R})$ such that $P^{-1}AP$ is a diagonal matrix.

Problem 3 (10pts). Let $A, B \in M_3(\mathbf{R})$ such that

$$\det(A) = \det(A + B) = \det(A - B) = 0.$$

Show that det(A + 2B) = 3 det(B).

Problem 4 (15pts). Let $A \in M_n(\mathbb{R})$. If rank $A + \operatorname{rank}(A - I_n) = n$, show that $\operatorname{Tr}(A) = \operatorname{rank} A$.

Problem 5 (15pts). Let $A = (a_{ij}) \in M_n(\mathbf{R})$. For each positive integer k, we define

$$A^{[k]} := (a_{ij}^k)$$
. For example, if $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, then $A^{[2]} = \begin{pmatrix} 1 & 4 \\ 9 & 16 \end{pmatrix}$.

Show that if $A^k = A^{[k]}$ for k = 1, 2, ..., n + 1, then $A^k = A^{[k]}$ for all k.

Problem 6 (20pts). Let $A, B \in M_n(\mathbb{R})$ such that

$$AB - BA = \alpha A$$

for some non-zero real number $\alpha \neq 0$.

- (1) (5pts) Show that $A^kB BA^k = \alpha k \cdot A^k$ for all positive integer k.
- (1) (opts) Show that $A^k = 0_n$ for some positive integer k.