國立臺灣大學113學年度碩士班招生考試試題

題號: 322

科目:應用電子學

節次: 7

題號: 322 2 頁之第 1

1. (15%) Consider the amplifier of Fig. 1 with a common-mode input voltage of +5 V (dc) and a differential input signal of 10-mV-peak sine wave. Let $(2R_1) = 1 \text{ k}\Omega$, R_2 = 0.5 M Ω , and $R_3 = R_4 = 10 \text{ k}\Omega$. Please find the output voltage (V_0).

2. (20%) The 6.8-V zener diode in the circuit of Fig. 2 is specified to have $V_Z = 6.8 \text{ V}$ at $I_Z = 5$ mA, $r_z = 20$ Ω , and $I_{ZK} = 0.2$ mA. The supply voltage V^+ is nominally 10 V but can vary by ± 1 V. (a) Find V_O with no load and with V^+ at its nominal value. (b) Please find the change in V_O when $R_L = 2 \text{ k}\Omega$ and $R_L = 0.5 \text{ k}\Omega$. (c) What is the minimum value of R_L for which the diode still operates in the breakdown region?

- 3. (15%) The differential amplifier circuit of Fig. 3 utilizes a resistor connected to the negative power supply to establish the bias current I. $V_{BE} = 0.7 \text{ V}$.
 - (a) For $v_{B1} = v_{id}/2$ and $v_{B2} = -v_{id}/2$, where v_{id} is a small signal with zero average, please find the magnitude of the differential gain, $|v_o/v_{id}|$.
 - (b) For $\psi_{B1} = \psi_{B2} = \psi_{icm}$, where ψ_{icm} has a zero average, find the magnitude of the please common-mode gain, | Vo / Vicm |.
 - (c) Please calculate the CMRR.

題號: 322 國立臺灣大學113學年度碩士班招生考試試題

科目:應用電子學

節次: 7

題號:322 共 2 頁之第 2 頁

4. (20%) The variable resistor in the circuit in Fig. 4 is adjusted for maximum power transfer to R_O . (a) Find the value of R_O . (b) Find the maximum power that can be delivered to R_O .

5. (20%) The switch in the circuit in Fig. 5 has been in position 1 for a long time. At the t = 0, switch moves instantaneously to position 2. (a) Find $\mathcal{V}_0(t)$ for $t \ge 0^+$. (b) What percentage of the initial energy stored in the inductor is eventually dissipated in the 6 Ω resistor?

6. (10%) Please construct the Bode plots (magnitude and phase) for the transfer function.

$$\mathbf{H}(\omega) = \frac{200 j\omega}{(j\omega + 2)(j\omega + 10)}$$