題號: 297 國立臺灣大學 104 學年度碩士班招生考試試題

 科目:統計理論
 題號: 297

 節次: 2
 共 | 頁之第 | 頁

請詳細列出計算及推導過程,否則不予計分。題目前中括號 []內之數字為該題配分。

1. Define:

- (a) [5 points] Random experiment, probability set function and random variable.
- (b) [5 points] Moment generating function of a random variable.
- (c) [5 points] Characteristic function of a random variable.
- (d) [5 points] Unbiasedness, consistency, efficiency and sufficiency.
- (e) [5 points] Exponential family of distributions.
- (f) [5 points] Uniformly minimum-variance unbiased estimator.
- (g) [5 points] Likelihood function and maximum-likelihood estimator.
- (h) [5 points] Likelihood ratio test.
- (i) [5 points] Uniformly most powerful test.
- (j) [5 points] Linear statistical model and nonlinear statistical model.
- 2. [5 points] Let X_1, \ldots, X_9 be i.i.d. from the Normal distribution $N(\mu, \sigma^2)$ with unknown mean μ and variance σ^2 . If we have three statistics, $Y_1 = \frac{1}{6} \sum_{i=1}^6 X_i$, $Y_2 = \frac{1}{3} \sum_{i=7}^9 X_i$, and $S^2 = \frac{1}{2} \sum_{j=7}^9 (X_j Y_2)^2$, please find the sampling distribution of the statistic $Z = \sqrt{2}(Y_1 Y_2)/S$.
- 3. [10 points] Let X_1, \ldots, X_n be i.i.d. from the following continuous distribution:

$$f_{\theta}(x) = \theta(1+x)^{-(1+\theta)}, \quad x > 0;$$

with a unknown parameter $\theta > 0$.

- (a) Find an estimator of θ using the method of moments.
- (b) Find the Maximum Likelihood Estimate (MLE) of θ .
- 4. [15 points] Let X_1, \ldots, X_n be i.i.d. from the distribution with pdf

$$f(x;\theta) = \frac{3x^2}{\theta}e^{-x^3/\theta}, \quad x > 0.$$

- (a) Find the sampling distribution of $\sum_{i=1}^{n} X_i^3$.
- (b) Find the UMP (uniformly most powerful) test of size α for testing $H_0: \theta = \theta_0$ versus $H_a: \theta > \theta_0$.
- 5. [20 points] Let X_1, \ldots, X_n be i.i.d. having the Poisson(θ) distribution. We want to estimate $g(\theta) = e^{-\theta}$.
 - (a) Prove that $S \equiv \sum_{i=1}^{n} X_i$ is sufficient and complete for θ .
 - (b) An unbiased estimator is of the form, $T(X_1, \ldots, X_n) = I_{[X_1=0]}$. Please find the UMVUE (uniformly minimum variance unbiased estimator) for $g(\theta)$.
 - (c) Find the Cramér-Rao Lower Bound for the variance of unbiased estimator of $g(\theta)$. Decide whether the UMVUE of $g(\theta)$ reaches the Cramér-Rao Lower Bound.

試題隨卷繳回