國立臺灣大學 104 學年度碩士班招生考試試題 題號: 242

科目:工程數學(E)

題號: 242

共 2 頁之第

節次: 6

1. (15%) Find the general solutions of the following ODE's.

- (a) $y' = y e^x$
- (b) y' + y = x/y
- (c) $x^2y'' + 4xy' 4y = 0$
- 2. (a) (7%) Find the Laplace transform for $y(t) = t^2 e^{-at}$.
 - (b) (8%) If the Laplace transform of y(t) is $Y(s) = \frac{s^3}{s^4 + 4}$, please find
 - (i) the Laplace transform of $\frac{dy}{dt}$ (ii) the value of $\frac{dy}{dt}$ at t=0.
- 3. (10%) Solve the differential equation y'' + y' + 2xy = 0 by series solution:
 - (a) Assuming $y(x) = \sum_{m=0}^{\infty} a_m x^m$, find the recurrence relation for a_m .
 - (b) Select two separate sets of $[a_0, a_1] = [0, 1]$ and [1, 0], find the series solutions for each set up to 4 terms.
- 4. (10%) The definition of Bessel function of order n is

$$J_n(x) = x^n \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+n} m! (n+m)!}$$

- (a) Show that $\int x J_0(x) dx = x J_1(x)$.
- (b) Show that $J_0(x)$ has a bounded value everywhere.
- 5. You will be solving the following partial differential equation (PDE) problem using the "Method of Separation of Variables":

$$u_t = u_{xx}$$
 for $0 \le x \le \pi$ and $t > 0$

B.C.s:
$$u_x(0,t) = u_x(\pi,t) = 0$$
 for $t > 0$

I.C.:
$$u(x,0) = \cos^2(x)$$
 for $0 \le x \le \pi$

- (4%) (a) Why can the "Method of Separation of Variables" be applied to this problem?
- (6%) (b) What are the eigenvalues and eigenfunctions associated with this problem?
- (10%) (c) Please find the solution of this PDE problem

題號: 242

國立臺灣大學 104 學年度碩士班招生考試試題

科目:工程數學(E)

節次: 6

型號・242 共 ン 頁之第 ン 頁

6. If a vector field $\underline{F} = (2xy - y^4 + 3)\underline{i} + (x^2 - 4xy^3)\underline{j}$, C: the path connecting (0,0) and (2,1).

(5%) (a) Please show the reason why \underline{F} is a conservative vector field.

(5%) (b) If \underline{F} is a conservative vector field, there exists a (scalar) potential function ϕ . Please also show the relationship between \underline{F} and ϕ .

(5%) (c) Please calculate ϕ and $\int_{C} \underline{F} \bullet d\underline{r}$.

7. You are given the following matrix A:

$$A = \begin{bmatrix} 5 & 4 \\ -6 & -5 \end{bmatrix}$$

(4%) (a) Find the eigenvalues and eigenvectors of the matrix A

(4%) (b) If A is similar to D (a diagonal matrix with eigenvalues as the diagonal components), what are the transition matrix P and its inverse P^{-1} ?

(7%) (c) Use the results from (a) and (b) to solve the following system of ODEs:

$$\frac{dx_1}{dt} = 5x_1 + 4x_2 + e^{2t}$$

$$\frac{dx_2}{dt} = -6x_1 - 5x_2 + 2e^{2t} + t$$

試題隨卷繳回