i號: 222 國立臺灣大學 104 學年度碩士班招生考試試題

科目:材料力學(B)

節次: 8

題號: 222

頁之第 / 頁

※ 注意:請於試卷內之「非選擇題作答區」作答,並應註明作答之題號。

- 1. (25%) A composite circular shaft of length L=2 m and fixed on both ends is made of two materials with shear modulus G=2 GPa for radius $0.08 \le r \le 0.1$ m and G=1 GPa for radius $0 \le r \le 0.08$ m. The shaft is subjected to a distributed torsional moment load t=31 kN-m/m on the left half span $0 \le x \le 1$ m but no load on the right half span $1 \le x \le 2$ m.
 - (a) (10%) Find the reaction torques at the two ends. Draw the torque diagram for the shaft.
 - (b) (5%) Determine the shear strain distribution over the cross section near the left end x = 0. Do the shear strains show the shear deformation for the axial-radial coordinate plane? or the shear deformation for the axial-circumferential coordinate plane? or the shear deformation for the plane of cross section?
 - (c) (5%) Determine the shear stress distribution over the cross-sections near the left end.
 - (d) (5%) Calculate the maximum twist angle and the location at which it occurs.
- 2. (25%) A horizontal cantilever beam of length 1 m ($0 \le x \le 1$ m) is fixed at the left end x = 0 and acted upon by a concentrated load P = 1 kN (vertical downward in the positive Z-direction) at the right end x = 1 m. The beam is made of a thin-walled unequal-leg angle section which has one vertical leg ($0 \le Z \le 100$ mm, $0 \le Y \le 10$ mm) and one horizontal leg ($0 \le Y \le 40$ mm, $0 \le Z \le 10$ mm). Here xYZ is a right-handed rectangular coordinate system, of which the x-axis passes through the centroids of the angle sections. There are also the y-axis and z-axis parallel to the Y-axis and Z-axis, respectively, and intersecting at the centroid o of the angle section.
 - (a) (5%) Locate the centroid o and the shear center S of the angle section.
 - (b) (5%) Find the principal moments of inertia $I_{y_p} = I_{max}$, and $I_{z_p} = I_{min}$, and the angle θ_p between the y-axis and the y_p -axis (i.e. the major axis).
 - (c) (10%) Should the end load P be applied at the centroid o or at the shear center S in order to avoid twisting? If P is applied at S, find the distributions of shear and normal stresses over the end section x = 1 m.
 - (d) (5%) Find the (magnitude and direction of) deflection at the end x = 1 m.
- 3. (16%) Consider isotropic, linearly elastic materials with Young's modulus E, Poisson's ratio ν , shear modulus G, and thermal expansion coefficient α .
 - (a) (8%) State the definitions of E, ν , G, and α . What kind of material tests can be used (and how) to measure them? What are their ranges of numeric values (with units)?
 - (b) (2%) What is the relation between E, ν , and G?
 - (c) (4%) Express the strain components σ_{ij} (i, j = 1, 2, 3) in terms of the stress components σ_{ij} (i, j = 1, 2, 3) (and the temperature T).
 - (d) (2%) Do the principal axes of stresses and strains coincide? Why?
- 4. (9%) A beam of length L ($0 \le x \le L$) with both ends fixed is subjected to the transverse distributed load q(x). Denote the normal and shear stresses induced in the beam by $\sigma(x,z)$ and $\tau(x,z)$, respectively. These stresses have resultants: the bending moment M(x) and the shear force V(x). The beam thus undergoes the deflection w(x), slope w'(x), curvature $\kappa(x)$, and axial strain $\epsilon(x,z)$. What is the elastic energy U stored in the beam in terms of stress? What is the elastic energy U stored in the beam in terms of moment? What is the work W done by the load q(x)? Is U = W?
- 5. (25%) Consider a prismatic member (rod/beam/column) of length L ($0 \le x \le L$) under a centric axial force P.
 - (a) (15%) What are the key different consequences for the case P is tensile and for the case P is compressive? For each case draw a free-body diagram of a differential element of length dx of the member and indicate all forces/moments involved, and on the basis of the drawing, for each case, derive the equilibrium equations and the governing equations for displacements.
 - (b) (10%) What roles do geometric quantities of cross sections (for example, cross sectional area A, moments of inertia I_{min} or I_{max} , etc.) play? How significant are end supports in influencing the load-carrying capacity? How significant are intermediate supports in influencing the load-carrying capacity?