題號: 221

## 國立臺灣大學 104 學年度碩士班招生考試試題

科目:材料力學(A)

題號: 221 Ł / 百ッ笠 / 百

節次: 8

共 / 頁之第 / 頁

#### Question 1 (25%)

A post AB supporting equipment in a laboratory is tapered uniformly throughout its height H, as shown in the figure. The cross sections of the post are square, with dimensions  $b \times b$  at the top and  $1.5b \times 1.5b$  at the base. Derive a formula for the shortening  $\delta$  of the post due to the compressive load P acting at the top. (Assume that the angle of taper is small and disregard the weight of the post itself)



#### Question 2 (25%)

A beam of T-section is supported and loaded as shown in the figure. The cross section has width b = 35 mm, height h = 75 mm, and thickness t = 13 mm. Determine the maximum tensile and compressive stresses in the beam.



#### Question 3 (25%)

A beam is pin-connected to the tops of two identical pipe columns, each of height h, in a frame. The frame is restrained against sideways at the top of column 1. Only buckling of columns 1 and 2 in the plane of the frame is of interest here. Determine the ratio (a/L), where the load  $Q_{cr}$  causes both columns to buckle simultaneously.



### Question 4 (25%)

An element of aluminum is subjected to triaxial stress shown in the figure. If the following stress and strain data is known: normal stresses are  $\sigma_x = 36$  MPa (tension),  $\sigma_y = -33$  MPa (compression), and  $\sigma_z = -21$  MPa (compression) and normal strains in the x and y directions are  $\varepsilon_x = 713.8 \times 10^{-6}$  (elongation) and  $\varepsilon_y = -502.3 \times 10^{-6}$  (shortening). Calculate the normal strain in z direction  $\varepsilon_z$  and the bulk modulus K of the aluminum.



# 試題隨卷繳回