題號: 52

國立臺灣大學 110 學年度碩士班招生考試試題

科目:高等微積分

題號: 節次: 1 共 Q 頁之第

52

※ 注意:請於試卷內之「非選擇題作答區」標明題號依序作答。

- (1) $[5+10+10\ \text{分}]$ A function d: $M\times M\to [0,\infty)$ is called an *ultrametric* if
 - d(x, y) = 0 if and only if x = y;
 - $\bullet \ \mathrm{d}(x,y) = \mathrm{d}(y,x);$
 - $d(x, z) \leq \max\{d(x, y), d(y, z)\}$

for any $x, y, z \in M$. We call (M, d) an ultrametric space.

- (a) Show that an ultrametric space, (M, d), is a metric space.
- (b) In an ultrametric space, show that "all triangles are isosceles1".
- (c) Prove that an ultrametric space must be totally disconnected².
- (2) $[15+15 \ \%]$ For the following series, determine whether it converges or diverges. If the series converges, determine whether the convergence is absolutely or conditionally convergent. Justify your answer.
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)\log(n+1)}$, where log means natural logarithm.
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)}{\sqrt[n]{n}}$.

$$f_n(x) = \frac{\sin(nx)}{2nx}$$
 for $x > 0$.

(a) For every x > 0, determine $\lim_{n \to \infty} f_n(x)$.

Let f(x) be the function given by the pointwise limit you found in part (a).

- (b) Fix a positive number ε . Does $\{f_n(x)\}_{n\in\mathbb{N}}$ converges to f(x) uniformly over $[\varepsilon, \infty)$? Give your reason.
- (c) Does $\{f_n(x)\}_{n\in\mathbb{N}}$ converges to f(x) uniformly over $(0,\infty)$? Give your reason.

¹An isosceles triangle is a triangle that has two sides of equal length.

²A metric space M is totally disconnected if for every $x \in M$ and any $\varepsilon > 0$, there exists a subset $U \subset$ which is both open and closed, and which is contained in the open ball of radius ε centered at x.

國立臺灣大學 110 學年度碩士班招生考試試題

科目:高等微積分

題號: 52

節次: 1

題號: 52

頁之第

(4) [20 分] Let F be a smooth map from \mathbb{R}^3 to \mathbb{R}^3 . Denote by (x_1, x_2, x_3) the coordinate for the domain \mathbb{R}^3 . Denote the origin (0,0,0) by **O**. Suppose that

$$\det(DF|_{(x_1,x_2,x_3)}) = 0 \quad \text{for every} \quad (x_1,x_2,x_3) \in \mathbb{R}^3 ,$$

$$F(\mathbf{O}) = \mathbf{O} , \quad \frac{\partial F}{\partial x_1}\Big|_{\mathbf{O}} = (0,4,0) \quad \text{and} \quad \frac{\partial F}{\partial x_2}\Big|_{\mathbf{O}} = (3,0,0) .$$

Prove that there exist

- ullet open neighborhoods U, \tilde{U} of ${f O}$ in (the domain) ${\Bbb R}^3,$ and a diffeomorphism φ : $\tilde{U} \to U$ which maps **O** to **O**,
- open neighborhoods V, \tilde{V} of O in (the target) \mathbb{R}^3 , and a diffeomorphism $\psi: \tilde{V} \to V$ V which maps $\mathbf{0}$ to $\mathbf{0}$,

such that $\psi^{-1}\circ F\circ \varphi$ as a map from $\tilde U\subset \mathbb{R}^3$ to $\tilde V\subset \mathbb{R}^3$ is

$$(\psi^{-1} \circ F \circ \varphi)(y_1, y_2, y_3) = (y_1, y_2, 0)$$
.

What follows is the diagram for your reference.