1. Assume a (real valued) function \(y = f(x) \) satisfy \(y^2 + 9y = x^3 + x \). Suppose \(g(x) \) is a (real valued) function satisfying \(f(g(x)) = x \).
 (a) (5%) The value \(g(1) \) must be 2. True or false? Answer: _ (1)_.
 (b) (10%) The derivative \(g'(1) = _ (2)_.

2. An experiment detects that a particle at \((1, 0)\) (on the \(xy\)-plane) is moving towards the north at the speed 3 meters per minute. At the same time another particle at \((-2, 1)\) is moving towards the east at the speed 4 meters per minute.
 (a) (5%) Let \(s(t) \) be the distance (in meters) between the two particles in \(t \) minutes. \(s(t) = _ (3)_.
 (b) (10%). Suppose at \(t = t_0 \) the two particles are closest to each other. Then \(t_0 = _ (4)_.

3. (10%) Compute the indefinite integral \(\int \frac{dx}{(x-1)(x+1)} = _ (5)_.

4. (10%) Let \(\Omega \) be a region (on the \(xy\)-plane) enclosed by \(x = \sqrt{\ln y}, x = 0 \) and \(y = e \). Let \(S \) be the solid obtained by revolving \(\Omega \) about the \(y\)-axis. Let \(V \) be the volume of \(S \). \(V = _ (6)_.

5. Let \(f(x, y) = x^2 - e^{xy} \) and the surface \(S \) be the graph of the function \(z = f(x, y) \). Let \(P = (1, 0, 0) \in S \) and \(p = (1, 0) \) in the \(xy\)-plane.
 (a) (10%) If the unit vector \(u \) (in the \(xy\)-plane) at \(p \) is the direction (among all directions at \(p \) along which the height (i.e. the value of \(z \)) of \(S \) increases most rapidly, then \(u = _ (7)_.
 (b) (10%) Write \(H \) for the plane \(x + 2y + 3z = 1 \) and the curve \(C \) for the intersection \(S \cap H \). Let \(L \) be the tangent line to \(C \) at \(P \) and \(N \) be the plane perpendicular to \(L \) at \(P \). Then the equation of \(N \) is _ (8)_.

6. Let \(R \) be the region enclosed by \(y = x, y = x - 2, y = 1 \) and \(y = 0 \).
 (a) (10%) Let \(A \) be the area of \(R \). \(A = _ (9)_.
 (b) (5%) The double integral \(\iint_R \sqrt{x - y} \, dxdy = _ (10)_.

7. (15%) Let \(\Omega \) be the region \(\{(x, y) \mid (x-1)^2 + y^2 < 1 \} \). Evaluate the double integral \(\iiint_\Omega \frac{1}{x} \, dxdy \).

試題隨卷繳回