國立臺灣大學 107 學年度碩士班招生考試試題

54

科目:高等微積分

共 乙 頁之第

節次:

In the following "function" means "R-valued function."

• In a metric space, we let $B_r(p)$ denote the open ball with center p and radius r.

一、是非題

(每題2分。答案卷上請標明題號並依序以 ○/× 分別表示「是/非」作答。)

- 1. If I_n $(n \in \mathbb{N})$ are bounded open intervals in \mathbb{R} such that $\emptyset \neq I_{n+1} \subseteq I_n$ for all n, then $\bigcap_{n \neq 0} I_n \neq \emptyset.$
- 2. A continuous convex function on [-1,1] must be a Lipschitz function.
- 3. There exists a continuous function f on R such that f'(x) exists if and only if $x \neq 0$.
- 4. There exists a continuous function f on \mathbf{R} such that f'(x) exists if and only if x = 0.
- 5. If V(x,y) = (P(x,y), Q(x,y)) is a smooth vector field on an open set Ω in \mathbb{R}^2 such that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ everywhere on Ω , then the line integrals of V along any two smooth paths in Ω both travelling from a given point a to another point b coincide.
- 6. If f is a continuous function of R of period 2π , then the Fourier series of f converges pointwise to f.
- 7. If f is a smooth map from \mathbb{R}^2 to \mathbb{R}^2 such that the determinant of the Jacobi matrix of f takes value 0 at a point $p \in \mathbf{R}^2$, then $f|_{B_r(p)}$ cannot be injective no matter how small r(>0) is.
- 8. Let f be a smooth function on \mathbb{R}^2 which achieves a local minimum at a point (a,b). If (a,b) is the only point at which the gradient vector ∇f vanishes, then f(a,b) must be the global minimum of f.
- 9. If f and g are functions on [0,1] such that both f^2 and g^2 are Riemann integrable, then $(f+g)^2$ is Riemann integrable.
- 10. $\lim_{x\to 0^+} x^x = 0$.

二、計算與證明

(請在答案卷上標明題號,作答時不需依照題目編號順序。注意!時間短暫。)

- 1.(15 \Re) Let a > 1 and b > 0. How many different $x \in \mathbf{R}$ can fulfil the equation $a^x = |x|^b$? (The answer depends on the relation between a and b, and your answer has to exhaust all possibilities.)
- 2.(10 分) Let f be a function defined on a subset X of \mathbb{R}^2 . Prove the following statement: if $f|_B$ is uniformly continuous for every bounded set $B\subseteq X$, then there exists a continuous function g on the closure \bar{X} of X in \mathbf{R}^2 such that $f = g|_X$.

國立臺灣大學 107 學年度碩士班招生考試試題

科目:高等微積分

インロ・ロイン 公子・1 題號: 54 共 乙 頁之第 2 頁

3.(10 \Re) Show that if f is a uniformly continuous function on $[0,\infty)$ such that the improper integral $\int_0^\infty f(x)dx$ converges, then $\lim_{x\to\infty} f(x) = 0$.

4.(10 \Re) Let $C = \{(x,y) \in \mathbb{R}^2 | x^3 = y^2\}$. Show that for any continuously differentiable map $t \in \mathbb{R} \longmapsto (x(t), y(t)) \in \mathbb{R}^2$ whose image lies in C such that (x(0), y(0)) = (0, 0) we must have (x'(0), y'(0)) = (0, 0).

5.(10 \Re) Terminology. Let f_n be a sequence of functions on a metric space X. We say that f_n converges compactly to a function g defined on X if on every compact set K in X the sequence $f_n|_K$ converges to $g|_K$ uniformly.

Now suppose that f_n is a sequence of continuously differentiable functions on an open set U in \mathbb{R}^2 such that the three sequences f_n , $\frac{\partial f_n}{\partial x}$, and $\frac{\partial f_n}{\partial y}$ converge compactly to functions g, h_1 , and h_2 , respectively. Show that $\frac{\partial g}{\partial x} = h_1$ and $\frac{\partial g}{\partial y} = h_2$.

6.(10 \Re) Let f be a function on an open set U in \mathbf{R}^2 such that both $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist everywhere on U. Show that if $\frac{\partial f}{\partial x}$ is continuous at a point $(a,b) \in U$, then

$$\lim_{(x,y)\to(a,b)} \frac{\left|f(x,y)-f(a,b)-\frac{\partial f}{\partial x}(a,b)(x-a)-\frac{\partial f}{\partial y}(a,b)(y-b)\right|}{\sqrt{(x-a)^2+(y-b)^2}}=0.$$

7. Terminology. For a bounded function f on an interval [a,b] (a < b) and a subdivision $\Delta : a = x_0 < \cdots < x_k = b$ of [a,b], we define the upper sum and the lower sum of f with respect to Δ by

$$\overline{S}(f,\Delta) := \sum_{j=1}^k \sup_{x_{j-1} \leqslant x \leqslant x_j} f(x)(x_j - x_{j-1})$$

and

$$\underline{S}(f,\Delta) := \sum_{j=1}^{k} \inf_{x_{j-1} \leqslant x \leqslant x_j} f(x)(x_j - x_{j-1}),$$

respectively. A function f on [a,b] is called Darboux integrable if it is bounded and for any given $\varepsilon > 0$ there exists a subdivision Δ of [a,b] such that $\overline{S}(f,\Delta) - \underline{S}(f,\Delta) < \varepsilon$.

- (i) (8 %) Show that all continuous functions on [a, b] are Darboux integrable.
- (ii) (7 %) Show that all monotone functions on [a, b] are Darboux integrable.

試題隨卷繳回