國立臺灣大學 106 學年度碩士班招生考試試題

52

科目:高等微積分

題號: 52

節次: 1 共 / 頁之第

本卷滿分為 100 分,總得分為負時以 0 分計。

1. 是非題

(每題答對/答錯/不作答分別得 2/-1/0 分。答案卷上請標明題號並依序以 ○/× 分別表示「是/非」作答)

- 1. A subset S of a metric space is compact if it is bounded and closed.
- 2. If f is a C^{∞} function on \mathbf{R} and its Taylor series with center 0 converges everywhere on \mathbf{R} , then the series converges to f pointwise at least in some open neighborhood of 0.
- 3. A convex function on [-1,1] must be continuous.
- 4. A convex function on R must be continuous.
- 5. If a function $R \xrightarrow{f} R$ has the intermediate value property (i.e., for any a < b and any number c between f(a) and f(b) there exists some $x_0 \in [a, b]$ such that $c = f(x_0)$, then f is continuous.
- 6. If f_n is a sequence of Riemann integrable functions on [0,1] which converges pointwise to a a function f, then f has at most countably many discontinuous points.
- 7. If a map $[0,1] \xrightarrow{f} \mathbf{R}$ is uniform continuous, then it is Lipschitz.
- 8. Consider the map $(x, y, z) \in \mathbb{R}^3 \xrightarrow{f} (x^3, x^2 + y, z^5 + z \sin^2(xy)) \in \mathbb{R}^3$. For every open set U in \mathbb{R}^3 containing (0,0,0) the restriction $f|_U$ is not an injection.
- 9. Suppose that $[0,1] \xrightarrow{f} \mathbf{R}$ is Riemann integrable on [c,1] for every $c \in (0,1]$. If $\lim_{c \to 0^+} \int_c^1 f(x) \, dx$ exists, then f is also Riemann integrable on [0,1] and $\int_0^1 f(x) \, dx = \lim_{c \to 0^+} \int_c^1 f(x) \, dx$.
- 10. If f(x,y) is a C^2 function and $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$, $\frac{\partial^2 f}{\partial x^2}(0,0) < 0$, and $\frac{\partial^2 f}{\partial y^2}(0,0) < 0$, then f has a local maximum at (0,0).

2. 填充、計算與證明

(請在答案卷上標明題號,作答時不需依照題目編號順序。注意時間,先做有把握的題目。) 1.(10 points) Let $A=\{(x,y,z,w)\in\mathbf{R}^4\,|\,x^2+y^2+z^2-w^3\leq 1,x^2+y^2+z^2\leq 4,0\leq w\leq 10\}$. Fill in the boxes in the expression below with functions so that both equalities hold for <u>all</u> continuous functions f on \mathbf{R}^4 :

$$\int_A f = \int_\square^{10} \left(\int_\square^\square \left(\int_\square^\square f(x,y,z,w) dx \right) dy \right) dz \right) dw = \int_\square^\square \left(\int_\square^\square \left(\int_\square^\square \left(\int_\square^\square f(x,y,z,w) dw \right) dy \right) dz \right) dz.$$

2.(15 points) Consider the vector field $(P(x,y),Q(x,y)):=\left(y+e^{xy},\frac{xy-1}{y^2}e^{xy}+3x\right)$ on $\mathbb{R}^2\setminus(\mathbb{R}\times\{0\})$. Compute $\int_{\gamma}Pdx+Qdy$ where $\gamma(t)=(\cos t,\sin t),\,t\in\left[\frac{\pi}{6},\frac{5\pi}{6}\right]$.

3.(15 points) Let X be a metric space. We say that a function $X \xrightarrow{f} \mathbf{R}$ is upper semicontinuous (use for short) if $\limsup_{x \to a} f(x) \leqslant f(a)$ for every $a \in X$. Show that if $X \xrightarrow{f} \mathbf{R}$ is use and X is compact, then f achieves its maximum on X, i. e., there exists $a \in X$ such that $f(a) \geqslant f(x)$ for all $x \in X$.

4.(15 points) Let $X \xrightarrow{f} X$ be a self map on a complete metric space (X,d). Show that if there exists a constant $0 \le C < 1$ such that $d(f(x), f(x')) \le Cd(x, x')$ for all $x, x' \in X$ then there exists a unique $x_0 \in X$ such that $f(x_0) = x_0$.

- 5. Let $\mathbf{R} \xrightarrow{f} \mathbf{R}$ be a function such that $\lim_{t \to a} f(t)$ exists for every $a \in \mathbf{R}$.
- (1)(10 points) Show that the function $x \in \mathbb{R} \xrightarrow{g} \lim_{t \to x} f(t) \in \mathbb{R}$ is continuous.
- (2)(15 points) Let g be the function defined in (1). Show that for every $\epsilon > 0$ and every pair of real numbers a, b with a < b the set $A := \{x \in [a, b] | |f(x) g(x)| > \epsilon\}$ is finite. (Hint. You might want to use the Bolzano-Weierstrass theorem.)

試題隨卷繳回