題號: 52 國立臺灣大學 112 學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

題號: 52

頁

共 / 頁之第 /

Notation: **R** is the set of real numbers, and **C** is the set of complex numbers. If $F = \mathbf{R}$ or **C**, denote by $M_n(F)$ the $n \times n$ matrices with entries in F. If $A \in M_{m \times n}(F)$, denote by $A^t \in M_{n \times m}(F)$ the transpose of A. Denote by I_n the $n \times n$ identity matrix and 0_n the $n \times n$ zero matrix.

Problem 1 (10pts). Let $i = \sqrt{-1} \in \mathbb{C}$ be a root of $X^2 + 1$. Let

$$v_1 = (1, 0, -\mathbf{i}), \quad v_2 = (1 + \mathbf{i}, 1 - \mathbf{i}, 1), \quad v_3 = (\mathbf{i}, \mathbf{i}, \mathbf{i}).$$

Show that $\{v_1, v_2, v_3\}$ is a basis of \mathbb{C}^3 and express the vector $v_4 = (1, 0, 1)$ as a linear combination of v_1, v_2 and v_3 , namely find $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{C}$ such that $v_4 = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$.

Problem 2 (15 pts). Let

$$\mathbf{v}_1 = (0, 3, 3, 1), \ \mathbf{v}_2 = (2, 1, -3, 7), \ \mathbf{v}_3 = (1, 8, 6, 6), \ \mathbf{v}_4 = (1, 10, -4, 2)$$

be vectors in \mathbb{R}^4 . Let $W_1 = \operatorname{span}_{\mathbb{R}} \{ \mathbf{v}_1, \mathbf{v}_2 \}$ and let $W_2 = \operatorname{span}_{\mathbb{R}} \{ \mathbf{v}_3, \mathbf{v}_4 \}$. Find the dimension and a basis of $W_1 \cap W_2$.

Problem 3 (25 pts). Let

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix} \in M_{2\times 3}(\mathbf{R}).$$

- (1) (15pts) Find an orthogonal matrix $P \in M_3(\mathbf{R})$ such that $P^{-1}A^{\dagger}AP$ is a diagonal matrix.
- (2) (10pts) Find the singular value decomposition of A. In other words, factorize $A = U\Sigma V^{t}$, where $U \in M_{3}(\mathbf{R})$ and $V \in M_{3}(\mathbf{R})$ are orthogonal matrices and $\Sigma \in M_{2\times 3}(\mathbf{R})$ is of the form

$$\Sigma = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \end{pmatrix}, \quad \lambda_1 \ge \lambda_2 \ge 0$$

Problem 4 (15pts). Let $V = M_3(\mathbf{C})$ be a 9-dimension vector space over \mathbf{C} and let

$$A = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}.$$

Define the linear transformation $T: V \to V$ by

$$T(B) = AB - BA$$
.

- (1) (5pts) Find the dimension of Ker T.
- (2) (10pts) Show that T is diagonalizable.

Problem 5 (15pts). Let $A, B \in M_n(\mathbf{R})$. Prove that rank $A + \operatorname{rank} B \leq n$ if and only if there exists an invertible matrix $X \in M_n(\mathbf{R})$ such that $AXB = 0_n$.

Problem 6 (20pts). Let A and B be elements in $M_n(\mathbb{C})$. Suppose that

$$AB - BA = c \cdot (A - B)$$

for some non-zero $c \in \mathbb{C}$. Prove that there exists an invertible matrix $P \in M_n(\mathbb{C})$ such that $P^{-1}AP$ and $P^{-1}BP$ are upper-triangular matrices with the same diagonal entries.