國立臺灣大學 114 學年度碩士班招生考試試題

題號: 70 科目:數理統計

们口·双连的 豁力: G 共 3 頁之第 / 頁

Statistics

1. Let X_1, \ldots, X_n be independent Bernoulli random variables with $p_i = \mathbb{P}(X_i = 1), i = 1, \ldots, n$, such that

$$\log \frac{p_i}{1-p_i} = \alpha + \beta t_i,$$

where t_i 's are known constants while α and β are unknown parameters. Please

(a) show that the pmf of X_i can be expressed by

$$\mathbb{P}(X_i = x_i) = \frac{\exp(x_i(\alpha + \beta t_i))}{1 + \exp(\alpha + \beta t_i)}, \quad x_i = 0 \text{ or } 1,$$

and derive the joint pmf of X_1, \ldots, X_n ,

5 points)

- (b) show that the joint pmf forms an exponential family and find a 2-dimensional sufficient statistic for (α, β) . (5 points)
- 2. The pdf of $\Gamma(\alpha, \lambda)$ is given as

$$f(x|\alpha,\lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\lambda x), \quad x > 0; \ \alpha > 0, \ \lambda > 0.$$

Let $X_1, X_2, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \Gamma(\alpha, \lambda)$. Please

(a) find the method of moment estimators $(\hat{\alpha}, \hat{\lambda})$ for (α, λ) ,

(10 points)

(b) show that both $\hat{\alpha}$ and $\hat{\lambda}$ are consistent.

(10 points)

3. Let X_1 and X_2 be two i.i.d. random variables from a location-scale family with pdf

$$f_{\theta,\sigma}(x) = \frac{1}{\sigma}g(\frac{x-\theta}{\sigma}), \quad x \in \mathbb{R},$$

where $\sigma > 0$, $\theta \in \mathbb{R}$, and g is a known pdf that does not depend on θ and σ . Please

(a) given

$$Z = \frac{X_1 + X_2 - 2\theta}{|X_1 - X_2|},$$

show that the pdf of Z does not depend on the parameters θ and σ ,

(5 points)

(b) derive a $(1 - \alpha)$ confidence interval for θ using $q_{\alpha/2}$ and $q_{1-\alpha/2}$, the upper and lower $(\alpha/2)$ th quantiles for the distribution of Z respectively. (5 points)

题號: 70 科目:數理統計

節次: 6

共 万 页之第 2 页

4. Consider the following hierarchical model:

$$Z \mid p \sim \operatorname{Ber}(p), \quad 0
 $X \mid Z = 0, \theta_1 \sim \operatorname{Poisson}(\theta_1), \quad \theta_1 > 0,$
 $X \mid Z = 1, \theta_2 \sim \operatorname{Geom}\left(\frac{1}{\theta_2 + 1}\right), \quad \theta_2 > 0.$$$

Please

(a) derive the joint likelihood function for (X, Z),

(5 points)

(b) given $\{(x_i, z_i), i = 1, ..., n\}$ i.i.d. from the above model, find the MLEs of θ_1, θ_2 , and p.

(10 points)

(Recall the pmf of Geom(p) is given by $\mathbb{P}(X = x) = p(1 - p)^x$ for x = 0, 1, 2, ... and the pmf of Poisso(λ), $\lambda > 0$, is given by $\mathbb{P}(X = x) = (e^{-\lambda}\lambda^x)/x!$ for x = 0, 1, 2, ...)

- 5. Let X_1, \ldots, X_n be i.i.d. Bernoulli random variables with success probability p. Let $\hat{p} = \sum_{i=1}^{n} X_i/n$. Please
 - (a) show that $\sqrt{n}(\hat{p}^2 p^2)$ converges in distribution to $N(0, 4p^3(1-p))$, (5 points)
 - (b) show that $4X_1X_2X_3(1-X_4)$ is an unbiased estimator of $4p^3(1-p)$, (2 points)
 - (c) find the UMVUE of $4p^3(1-p)$ when $n \ge 4$. (8 points)
- 6. Suppose X_1, \ldots, X_n are i.i.d. from p-dimensional normal $N_p(\mu, I_p)$, where $\mu \in \mathbb{R}^p$ and I_p is a p-dimensional identity matrix, whose pdf is given by

$$f(x|\mu) = \frac{1}{(2\pi)^{p/2}} \exp\left\{-\frac{1}{2}(x-\mu)^{\mathsf{T}}(x-\mu)\right\}, \quad x = (x_1, \dots, x_p)^{\mathsf{T}} \in \mathbb{R}^p.$$

Please

- (a) show that the log-likelihood ratio test statistic to test $H_0: ||\mu|| = r$ versus $H_1: ||\mu|| \neq r$ is equivalent to $T = n(||\bar{X}|| r)^2$, where $||\mu||^2 = \sum_{i=1}^p \mu_i^2$ for $\mu = (\mu_1, \dots, \mu_p)^{\mathsf{T}}$ and r is a fixed constant, (10 points)
- (b) assuming $nr^2 > c$ for some constant c, please derive the power of the likelihood ratio test that rejects H_0 when T > c in terms of the cdf for a noncentral chi-squared distribution. (10 points)

(Recall that given k independent normally distributed random variables $X_i \sim N(\mu_i, 1)$, i = 1, ..., k, $\sum_{i=1}^k X_i^2$ follows the noncentral chi-squared distribution with degrees of freedom k and noncentrality $\lambda = \sum_{i=1}^k \mu_i^2$.)

題號: 70

國立臺灣大學 114 學年度碩士班招生考試試題

科目: 數理統計

共 3 頁之第 3 頁

7. Consider a Bayesian model where the random parameter Θ has a Bernoulli prior distribution such that $\mathbb{P}(\Theta = 0) = \pi$ and $\mathbb{P}(\Theta = 1) = 1 - \pi$ with $0 < \pi < 1$. Given $\Theta = 0$, the data X has pdf $f_0(x)$, and given $\Theta = 1$, X has pdf $f_1(x)$. With a loss function $L(\theta, d)$, the Bayes estimator $\delta^{\pi}(X)$ minimizes the posterior expected loss $\mathbb{E}[L(\Theta, \delta^{\pi}(X)) | X = x]$. Please find the Bayes estimator of Θ under

(a) squared error loss $L(\theta, d) = (\theta - d)^2$,

(5 points)

(b) $0 - 1 \log s$,

(5 points)

$$L(\theta, d) = \begin{cases} 0, & d = \theta, \\ 1, & \text{o.w..} \end{cases}$$

試題隨卷繳回