國立臺灣大學 112 學年度碩士班招生考試試題

題號: 351 科目: 工程數學(D)

共 3 頁之第 1 頁

題號:351

村日・ 上程数字(D 節次: 4

In this exam, without further specifying, $\mathbb R$ denotes the set of all real numbers, $\mathbb C$ denotes the set of all complex numbers, and i denotes the imaginary unit. For a complex number a+bi with $a,b\in\mathbb R$, we denote $(a+bi)^\dagger$ as its complex conjugate, i.e. a-bi. We will also use '†' to denote the *conjugate transpose* of a complex matrix. We let I_n to be the $n\times n$ identity matrix. We will use $\mathbf 0$ to denote the zero vector or the zero matrix in some vector space.

- 1. (Basis and Dimension) This problem concerns the basic definition of vector space, and its basis and dimension.
 - (a) (5%) Let $\mathbb{Z}_2^n := \{0,1\}^n$ the set of all *n*-bit strings for any integer *n*. The set \mathbb{Z}_2^n forms a vector space over \mathbb{Z}_2 . For example, for vectors $101,001 \in \mathbb{Z}_2^3$ and scalars $0,1 \in \mathbb{Z}_2$, we have

$$101 + 001 \pmod{2} := (1 \oplus 0)(0 \oplus 0)(1 \oplus 1) = 100 \in \mathbb{Z}_2^3;$$

$$101 \cdot 1 = (1 \cdot 1)(0 \cdot 1)(1 \cdot 1) = 101 \in \mathbb{Z}_2^3;$$

$$101 \cdot 0 = (1 \cdot 0)(0 \cdot 0)(1 \cdot 0) = 000 \in \mathbb{Z}_2^3.$$

What is the dimension of the vector space \mathbb{Z}_2^n over \mathbb{Z}_2 ? Give a basis of the vector space \mathbb{Z}_2^n over \mathbb{Z}_2 .

(b) (5%) We denote '†' by a conjugate transpose. For example:

$$A = \begin{bmatrix} 1 & -2 - i & 5 \\ 1 + i & i & 4 - 2i \end{bmatrix} \in \mathbb{C}^{2 \times 3};$$

$$A^{\dagger} = \begin{bmatrix} 1 & 1 - i \\ -2 + i & -i \\ 5 & 4 + 2i \end{bmatrix}.$$

A (possibly complex) matrix A is Hermitian if and only if $A^{\dagger} = A$. Consider a vector space $\{A \in \mathbb{C}^{n \times n} : A^{\dagger} = A\}$ over field of real numbers. What is its dimension?

2. (Matrix Inversion)

- (a) (5%) Let A be an $n \times n$ non-singular matrix that satisfies $A^3 4A^2 + 3A 5I_n = 0$. Calculate the inverse of A in terms of a polynomial of A.
- (b) (5%) Let $\omega := e^{\frac{2\pi i}{n}}$ for some integer n and let

$$B := \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix}.$$

Calculate the inverse of B. Express your answer in the most simplified form.

(c) (5%) Justify your answers to Problem (b).

國立臺灣大學 112 學年度碩士班招生考試試題

題號: 351 科目: 工程數學(D)

科日・ 工程数学(リ) 節次: 4 題號:351

共 3 頁之第 2 頁

3. (5%) Suppose columns of a matrix A are n vectors in \mathbb{R}^m . Answer the following questions.

- (a) (True or False) A is an $n \times m$ matrix.
- (b) If the columns are linear independent, what is the rank of A?
- (c) If the columns span \mathbb{R}^m , what is the rank of A?
- (d) If the columns form a basis for \mathbb{R}^m , what can you say about the rank, n, and m?
- (e) Suppose A has rank r, it means that A has r _____ columns?
- (f) (True or False) The map $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\mathbf{x}) := A\mathbf{x}$ is a linear transform.

(Getting 5 points if all answers are correct. Otherwise, 0 point.)

- 4. (Eigenvalues and Eigenvectors)
 - (a) (5%) Let

$$A := \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}.$$

Write down the 3 eigenvalues of A with multiplicity in the decreasing order.

(b) (10%) Suppose that an $n \times n$ matrix B satisfies

$$B := \begin{bmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \cdots & a \end{bmatrix},$$

where a > 0 and b > 0. Write down all the eigenvalues of B with multiplicity in the decreasing order in terms of a, b, and n.

- (c) (5%) Write down all the eigenvectors associated with the above eigenvalues of B. Note that each eigenvector has to be normalized to have a unit Euclidean norm.
- 5. Consider a random variable X and $\mathrm{E}[|X|] < \infty$. Hence, its expectation $\mathrm{E}[X]$ exists. Let us denote $\mathrm{E}[X]$ as μ_X for notational simplicity. The absolute deviation from the mean is $|X \mu_X|$, and its expectation is denoted as

$$d_X := \mathbb{E}[|X - \mu_X|].$$

Let σ_X denote the standard deviation of X if it exists.

- (a) (5%) Suppose the probability density function of X, $f_X(t)$, is proportional to $e^{-\lambda |t|}$, for some $\lambda > 0$. Derive d_X in terms of σ_X .
- (b) (5%) Let X be a normal random variable. Derive d_X in terms of σ_X .
- (c) (5%) Is it true that for any random variable X with finite variance, $d_X \leq \sigma_X$? If your answer is "yes", prove it. If your answer is "no", give a counter example.

題號: 351

國立臺灣大學 112 學年度碩士班招生考試試題

科目: 工程數學(D)

節次: 4

共 3 頁之第 3 頁

題號: 351

6. Let X be continuous random variable with cumulative distribution function $F_X(t), t \in \mathbb{R}$ and probability density function $f_X(t), t \in \mathbb{R}$. Furthermore, $f_X(t) = f_X(-t)$ for any $t \in \mathbb{R}$, and $E[X^2] < \infty$. Let Y be another random variable, independent of X, that takes values at 1 or -1 with equal probability, that is,

$$Y = \begin{cases} 1, & \text{with probability } 1/2\\ -1, & \text{with probability } 1/2 \end{cases}$$

Let Z = XY, the product of X and Y.

- (a) (5%) Are X and Z correlated? Justify your answer rigorously by deriving the covariance between X and Z.
- (b) (5%) Are X and Z independent? Justify your answer rigorously by deriving the joint cumulative distribution function of X and Z.
- 7. Let U be an uniform random variable over the interval (0,1). Given $U=u, X_1, X_2, \ldots$ are independent and identically distributed Bernoulli u random variables. Let W_n denote the number of "1"s in the length-n sequence (X_1, X_2, \ldots, X_n) .
 - (a) (5%) Derive the conditional probability mass function of $(X_1, X_2, \ldots, X_n, W_n)$ given U:

$$P_{X_1,X_2,...,X_n,W_n|U}(x_1,x_2,...,x_n,w|u).$$

(b) (5%) Derive the conditional probability mass function of (X_1, X_2, \ldots, X_n) given W_n :

$$P_{X_1,X_2,...,X_n|W_n}(x_1,x_2,...,x_n|w).$$

- (c) (5%) Derive the moment generating function of W_n .
- (d) (5%) Derive the probability mass function of W_n .
- (e) (5%) Derive the joint probability mass function of (X_1, X_2, \ldots, X_n) :

$$P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n).$$

試題隨卷繳回