國立臺灣大學 109 學年度碩士班招生考試試題

題號: 53 科目:代數 節次: 2

題號: 53 共 | 頁之第 | 頁

Notations:

 \mathbb{Q} : the field of rational numbers.

 \mathbb{F}_n : the finite field with n elements.

Z(G): the center of the group G.

1. (15 %) Let R be a commutative ring with 1 and I_1, \ldots, I_n be ideals in R. Show that if I_i, I_j are coprime $\forall i \neq j$, then

$$R/I_1I_2\cdots I_n\cong R/I_1\times R/I_2\times\cdots\times R/I_n$$
.

- 2. (15%) Let A_d be the ring of integers in the quadratic field $\mathbb{Q}(\sqrt{d})$.
 - (a) Show that A_5 is a UFD.
 - (b) Show that A_{-5} is not a UFD.
- 3. (30%)
 - (a) Show that if $|G| = 3 \times 5 \times 7^2 \times 13$ and N is a normal subgroup of G with |N| = 5, then $N \subset Z(G)$.
 - (b) Prove that no simple group has order p^2q , where p and q are primes.
 - (c) Show that if |G| = 225, then there is a normal subgroup having prime index.
- 4. (24 %)
 - (a) Let L/K be a finite separable extension. Show that L has a primitive element α over K, that is, $L = K(\alpha)$.
 - (b) Let x and y be indeterminates and let $L = \mathbb{F}_p(x, y)$, $K = \mathbb{F}_p(x^p, y^p)$ with p a prime. Show that L does not have a primitive element over K
- 5. (16 %)
 - (a) Let K be a field and $f(x) \in K[x]$ be a separable polynomial. Assume that f(x) = g(x)h(x) in K[x]. Find an example of f(x) such that the Galois groups of f(x), g(x) and h(x) over K are nontrivial and the Galois groups of g(x) over K is isomorphic to the direct product of the Galois groups of g(x) and g(x) over g(x) over g(x) and g(x) over g(x) over g(x) and g(x) over g(
 - (b) Prove that the Galois group of $(x^3-2)(x^3-3)$ over \mathbb{Q} is not isomorphic to the direct product of the Galois groups of x^3-2 and x^3-3 over \mathbb{Q} .