題號: 53

國立臺灣大學 104 學年度碩士班招生考試試題

科目:高等微積分

節次: 1

題號: 53

頁之第 頁

1. (40 pts) Let $f(s,x) = \frac{2 + 3s\sqrt[3]{x}}{(1 + s\sqrt[3]{x})(1 + x)}, x \ge 0$. (a) Let $g_k(x) = f(k,x), k = 1, 2, 3, \dots$ Find $\lim_{k \to \infty} g_k(x)$ for $x \ge 0$.

- (a) Let $g_k(x) = f(x, x), x 1, 2, 3, ...$ Find $\lim_{k \to 0} \{g_k(x)\}$ converge uniformly on (0, 1]? (c) Find $\lim_{s \to 0^+} \frac{1}{s} \int_0^s f(s, x) dx$. (d) Find $\lim_{s \to \infty} \frac{1}{\ln s} \int_0^s f(s, x) dx$.
- (e) Show that there exists $\hat{s} > 0$ such that

$$\hat{s} = \int_0^{\hat{s}} f(\hat{s}, x) \, dx.$$

- (f) Let $s_0=0.01, s_{k+1}=\int_0^{s_k}f(s_k,x)\,dx,\ k=0,1,2,3,\dots$ Show that $\lim_{k\to\infty}s_k$ exists.
- 2. (30 pts) Assume that $D = [0,1] \times [0,1]$ and E is a closed subset of D. For $x=(x_1,x_2), \ |x|=\sqrt{x_1^2+x_2^2}$ denote the Euclidean norm of x in \mathbb{R}^2 .
- (a) Let $d(x) = \inf_{y \in E} |x y|$. Show that for each $x \in D$, there exists $\hat{y} \in E$ such that $d(x) = |x - \hat{y}|$.
- (b) Show that d(x) is a continuous function on D.
- (c) Show that $\sup_{x \in D} d(x) \le \inf_{y \in E} [\sup_{x \in D} |x y|]$.
- (d) Find an example E such that $\sup_{x \in D} [\inf_{y \in E} |x y|] < \inf_{y \in E} [\sup_{x \in D} |x y|]$ holds.
- 3. (30 pts) Let f(x) and g(x,y) be C^2 functions. (a) Show that $\lim_{h\to 0}\frac{f(3h)-3f(h)+2f(0)}{h^2}=3f''(0)$.
- (b) Assume f(x+2h) 2f(x+h) + f(x) = 0 for all x and h. Prove that f(x) = ax + b for some constants a and b.
- (c) Show that $\lim_{h\to 0} \frac{g(h,h)-g(h.0)-g(0,h)+g(0,0)}{h^2} = \frac{\partial^2 g}{\partial x \partial y}(0,0).$
- (d) Assume g(x+h,y+h)-g(x+h.y)-g(x,y+h)+g(x,y)=0 for all x,y and $h,g(x,0)=x^2+1$ and $g(0,y)=\cos y$. Find the function g(x,y).

試題隨卷繳回