國立臺灣大學 104 學年度碩士班招生考試試題

科目:電子學(D)

題號: 432

節次: 7

題號: 432 もう 頁之第 / 頁

1. (17 %) For a MOS+BJT differential pair as shown in Fig. 1, the threshold voltage of NMOS M_1 is 0.5 V and the thermal voltage for BJT Q_1 is 25 mV. For Q_1 , its $V_{\rm BE}$ is equal to 0.625 V when $I_{\rm c}=100~\mu{\rm A}$. For the tail current source, let's assume it is an ideal one with 1 mA. Channel length modulation and Early effect can be neglected in calculation. Note that R_L =0.5 K Ω .

Fig. 1

- (a) (6 %) Please design the size of M_1 and V_{in} such that both M_1 and Q_1 draw the same current. Note that $\mu_n C_{ox} = 100 \ \mu\text{A/V}^2$ and the voltage drop on current source is 200 mV.
- (b) (6%) The design in part (a) yields an asymmetric pair. In order to design a fully differential circuit, the size of M_1 and Q_1 must be changed such that both M_1 and Q_1 have the same DC current bias and transconductance. Please calculate $(W/L)_{M1}$ and the number of Q_1 in parallel.
- (c) (5 %) Please calculate the differential gain in part (b).
- 2. (33 %) In Fig. 2, neglect body effect in all transistors. Note that $(W/L)_{1,2}$ =40/1, $(W/L)_{3,4}$ =100/1, $\mu_n C_{ox}$ =50 μ_A/V^2 , $\mu_p C_{ox}$ =20 μ_A/V^2 , V_{An} =100 V, $|V_{Ap}|$ =66.67 V, V_{tn} =0.5 V, and V_{tp} =-0.5 V.

Fig. 2

- (a) (11 %) First, you can neglect the channel length modulation such that the amplifier gain is infinite. Then, for R_L =75 Ω , what is the minimum and maximum (W/L)₅ such that all MOS transistors can operate in saturation region?
- (b) (15 %) Now, let's choose $(W/L)_5$ =3000 and assume the internal node X has total equivalent capacitance 1 pF, what is the value of C_L (the total equivalent capacitance at V_{out}) to maintain the phase margin at 45 degree? In this case, we would like to have V_{out} as the dominant pole. Also, please draw the small-signal model for this circuit.
- (c) (7 %) Alternatively, we can design node X as the dominant pole. What is the maximum C_L in this case to keep phase margin better than 45 degree?

見背面

題號: 432

國立臺灣大學 104 學年度碩士班招生考試試題

科目:電子學(D)

共 多 頁之第 🗻 頁

節次: 7

3. (25%) Given the quadrature oscillator circuit as shown below, answer the following questions.

- (a) (5%) Show that the circuit involving the second OP amplifier is equivalent to a negative impedance converter, with equivalent impedance equal to $-R_f$ when looking into the right of the node marked with ν .
- (b) (5%) When R_f is equal to 2R, show that the circuit at the right-hand-side of the output of the first OP amplifier acts as a non-inverting integrator.
- (c) (5%) Without considering the output limiter circuit, derive the loop gain of the entire circuit and hence calculate the frequency of oscillation.
- (d) (5%) Explain why the two output voltages at v_{O1} and v_{O2} have an exact phase difference of 90° .
- (e) (5%) Explain the function of the limiter circuit in sufficient detail (5%).

Fig. 3

接次頁

題號: 432

國立臺灣大學 104 學年度碩士班招生考試試題

科目:電子學(D)

節次: 7

題號: 432

共 3 頁之第 3 頁

4. (25%) Given a static RAM cell based on the SR latch circuit shown in Fig.4a, the CMOS inverters are matched such that the circuit operation is symmetric around $V_{DD}/2$. Assume that the cell is storing a logic "0" in the output Q. A "set" operation by connecting S to voltage V_{DD} should ideally raise the voltage at the drain of Q_5 to at least $V_{DD}/2$ in order to trigger the regeneration via positive feedback. Here, assume for simplicity that the "set" operation involves only Q_2 and Q_5 , and at the end of the "set" operation the condition is like that shown in Fig.4b.

- (a) (5% each, total 10%) In what regions do the two transistors Q_2 and Q_5 operate?
- (b) (5%) List the equation that equals the drain currents of Q_2 and Q_5 .
- (c) (5%) For the "set" operation to successfully trigger the switch, what is the minimum W/L ratio of Q_5 relative to Q_1 (note: not relative to Q_2)?
- (d) (5%) For a 0.18- μ m fabrication process, with parameters $\mu_n C_{ox} = 4 \mu_p C_{ox} = 300 \mu \text{A/V}^2$, $V_{tn} = |V_{tp}| = 0.5 \text{ V}$, $V_{DD} = 1.8 \text{ V}$, plus the CMOS inverters $(W/L)_n = 0.27 \mu \text{m/} 0.18 \mu \text{m}$ and $(W/L)_p = 4(W/L)_n$, calculate $(W/L)_5$ using a value at 1.5-fold of the minimum obtained from (c) for security.

試題隨卷繳回