國立臺灣大學104學年度碩士班招生考試試題 題號: 426

科目:電磁學(C)

節次: 7

請在答案卷上標明題號作答,寫在題目卷不計分。填充題的計算過程不計分,計算題請詳列過程。

$$\varepsilon_0 = 10^{-9} / (36\pi) \text{ F/m}, \quad \mu_0 = 4\pi \times 10^{-7} \text{ H/m}$$

1. [計算題] (24%= 3% x 8) For the following electric field for a uniform plane wave in a non-magnetic medium ($\mu = \mu_0$):

$$E = 377 e^{-0.001z} \cos (6\pi \times 10^8 t - 4\pi z) a_x$$
 V/m,

please find (a) the frequency; (b) the wavelength (in the medium); (c) the direction of propagation of the wave; (d) the permittivity ε of the medium; (e) the conductivity σ of the medium; (f) the associated magnetic field H; (g) the instantaneous Poynting vector at z = 0; and (h) the time-average Poynting vector at z = 0.

2. [計算題] (10%= 5% x 2) In the system shown in Fig. 1, a (+) wave carrying power P is incident from line 1. (a) Find the value of R for which there is no reflected wave into line 1. (b) For the value of R found in (a), find the power transmitted into each of lines 2 and 3.

- 3. [計算題] (16%= 8% x 2) In the system shown in Fig. 2, the mass M is set in motion in the following manner: (1) the mass is brought to rest at the equilibrium position $x = x_0$ with no charge on the capacitor plates; (2) the mass is constrained to that position and the capacitor plates are charged to $\pm Q$ as shown; and (3) the mass is released, thereby permitting frictionless motion. (a) Obtain the **differential equation** for the motion of M and (b) find the **solution**.
- 4. [填充題] (6% = 2% x 3) Please find the voltage reflection coefficient $\overline{\Gamma}_R$ in a transmission line for its corresponding standing-wave ratio (SWR). (請注意正負號)
 - (a) $\overline{\Gamma}_R = \underline{\hspace{1cm}}$, if SWR = 1
 - (b) $\overline{\Gamma}_R = \underline{\hspace{1cm}}$, if SWR = 2
 - (a) $\overline{\Gamma}_R = \underline{\hspace{1cm}}$, if SWR = ∞

題號: 426 國立臺灣大學104學年度碩士班招生考試試題

科目:電磁學(C)

共 2 頁之第 2 頁

節次: 7

5. [填充題] (8% = 4% x 2) Please find the directivity D of an antenna for its corresponding pattern function of power density, $f(\theta, \phi)$.

(a)
$$D = \underline{\qquad}$$
, if $f(\theta, \phi) = \sin^2 \theta$

(b)
$$D = \underline{\hspace{1cm}}$$
, if $f(\theta, \phi) = \sin^4 \theta$

6. [填充題] (6% = 3% x 2) A cubic cavity resonator is made of perfectly electric conducting (PEC) walls and filled with a dielectric medium with relative permittivity ε_r . The dimensions of the resonator are a = b = d = 14.14 cm. Please find the lowest resonant frequency f_0 for its corresponding ε_r .

(a)
$$f_0 =$$
 _____ GHz, if $\varepsilon_r = 1$

(b)
$$f_0 =$$
 ____ GHz, if $\varepsilon_r = 4$

7. [計算題] (18%) A dielectric slab waveguide consists of a dielectric slab of relative permittivity $\varepsilon_{r1}=4$ sandwiched between the air of relative permittivity $\varepsilon_{r2}=1$. Optical waves are launched from the medium 1 to the air. Guided modes can exist in the slab when the incident angle θ_i is larger than the critical angle θ_c . The thickness of the slab is d. The operation wavelength is λ_0 . The electric field component E_y of even transverse electric (TE) modes can be expressed as

$$E_{y} = \begin{cases} A\cos(k_{x1}x) & \exp(-j\beta_{z}z) & \text{for } |x| < d/2 \\ B\exp(-\alpha_{x2}|x|) & \exp(-j\beta_{z}z) & \text{for } |x| > d/2 \end{cases}$$

- (a) $(8\% = 4\% \times 2)$ Find the critical angle θ_c and Brewster angle θ_B for optical waves launched from the medium 1 to the air.
- (b) (4%) Find the ratio A/B.
- (c) (6%) Find the value of α_{x2} of the fundamental mode TE₀, if $d = 1 \mu \text{m}$, $\lambda_0 = 0.5 \mu \text{m}$, and $\theta_i = 83.43^\circ$.
- 8. [計算題] (12%) The propagation constants of left-handed and right handed circularly polarized waves are different in a medium. If a linearly x-polarized wave is launched into the medium and propagates over a distance d, it is still linearly polarized. However, its polarization will be rotated at an angle θ with respect to the x-axis. Assume the propagation constants of the two circularly polarized waves are β_1 and β_2 , respectively. Please find the rotation angle θ in terms of β_1 , β_2 , and d.

試題隨卷繳回