國立臺灣大學105學年度轉學生招生考試試題

題號: 26

科目:微積分(C)

題號: 26

共 | 頁之第 |

百

※注意:禁止使用計算機

※ 注意:請於試卷上「非選擇題作答區」標明題號並依序作答。

- 考試不可使用計算機。
- 購於試卷上「非選擇題作答區」依序作答。
- 保留答案簿前兩面(四頁)為答案區,第五頁之後為計算草稿區。
- 第1至6題為填充題,答案請寫在答案簿第一面(兩页),任何計算皆不計分。
- 第7題為計算題,請將計算過程詳細寫在翻面的第三、四頁,只寫答案不計分。
- 1. Assume a (real valued) function y = f(x) satisfy $y^5 + 9y = x^3 + x$. Suppose g(x) is a (real valued) function satisfying f(g(x)) = x.
 - (a) (5%) The value g(1) must be 2. True or false? Answer: (1)
 - (b) (10%) The derivative g'(1) = (2).
- 2. An experiment detects that a particle at (1, 0) (on the xy-plane) is moving towards the north at the speed 3 meters per minute. At the same time another particle at (-2, 1) is moving towards the east at the speed 4 meters per minute.
 - (a) (5%) Let s(t) be the distance (in meters) between the two particles in t minutes. s(t) = (3).
 - (b) (10%) Suppose at $t = t_0$ the two particles are closest-to-each other. Then $t_0 = (4)$.
- 3. (10%) Compute the indefinite integral $\int \frac{dx}{(x^2-1)(x+1)} = (5)$.
- 4. (10%) Let Ω be a region (on the xy-plane) enclosed by $x = \sqrt{\ln y}$, x = 0 and y = e. Let S be the solid obtained by revolving Ω about the y-axis. Let V be the volume of S. V = (6)
- 5. Let $f(x,y) = x^2 e^{xy^2}$ and the surface S be the graph of the function z = f(x,y). Let $P = (1,0,0) \in S$ and p = (1,0) in the xy-plane.
 - (a) (10%) If the unit vector u (in the xy-plane) at p is the direction (among all directions at p) along which the height (i.e. the value of z) of S increases most rapidly, then u = (7)
 - (b) (10%) Write H for the plane x + 2y + 3z = 1 and the curve C for the intersection $S \cap H$. Let L be the tangent line to C at P and N be the plane perpendicular to L at P. Then the equation of N is (8).
- 6. Let R be the region enclosed by y = x, y = x 2, y = 1 and y = 0.
 - (a) (10%) Let A be the area of R. A = (9).
 - (b) (5%) The double integral $\iint_R \sqrt{x-y} \, dx dy =$ (10).
- 7. (15%) Let Ω be the region $\{(x,y)|(x-1)^2+y^2<1\}$. Evaluate the double integral $\iint_{\Omega} \frac{1}{x} dx dy$.

試題隨卷繳回