題號: 408

國立臺灣大學110學年度碩士班招生考試試題

科目:電子學(D)

節次:

題號:408

共 3 頁之第 1

※ 注意:請於試卷內之「非選擇題作答區」作答,並應註明作答之題號。

- 1. Choose ALL correct statements from the following: [5%]
 - (a) For a CMOS inverter with $(W/L)_N = (W/L)_P$, the propagation delay is given as $t_{PLH} > t_{PHL}$.
 - (b) The static power dissipation of a CMOS inverter is proportional to the operating frequency.
 - (c) The dynamic power dissipation of a CMOS inverter is independent of the transistor size.
 - (d) The switching threshold of a matched CMOS inverter depends on the size of the transistors.
 - (e) For a CMOS inverter, NM_H increases as $(W/L)_N$ increases.
- 2. Choose ALL correct statements from the following: [5%]
 - (a) A latch circuit has two stable states.
 - (b) The static power dissipation of 6T CMOS SRAM cells is 0.
 - (c) SRAM is a non-volatile memory.
 - (d) DRAM is a non-volatile memory.
 - (e) The read operation of a SRAM cell has to be nondestructive.
- 3. Consider the amplifier circuit as shown in Fig. 3. The parameters are given as $\mu_n C_{ox}(W/L) = 2 \, mA/V^2$, $V_t=1~V$, $V_{DD}=10~V$, $R_D=8~k\Omega$, $R_G=1~M\Omega$, $R_L=4~k\Omega$, $R_S=100~k\Omega$ and the coupling capacitors $(C_{C1} \text{ and } C_{C2})$ are ideal.
 - (a) Draw the midband small-signal equivalent circuit and find the voltage gain (v_o/v_s) . [10%]
 - (b) Find the input resistance (R_{in}) of the amplifier. [5%]
 - (c) It is obvious that the gain depends on the value of R_G . How do you choose R_G to achieve a voltage gain of -4? [5%]
 - (d) In order to evaluate the high-frequency response of the circuit, please draw the small-signal equivalent circuit by including C_{gs} and C_{gd} . [5%]
 - (e) Given that $C_{gs}=200\ fF$ and $C_{gd}=50\ fF$, use time constant method to evaluate the 3-dB frequency of the amplifier. [10%]

Fig. 3

- 4. Assume the op-amp is ideal in Fig. 4.
 - (a) Derive the transfer function $T(s) \equiv V_o/V_i$ of the circuit. [10%]
 - (b) For m=2, find the magnitude and phase of the transfer function at $\omega=1/RC$. [5%]
 - (c) To ensure no gain peaking in the frequency response, how do you choose the design parameter m? [5%]

題號: 408

節次:

國立臺灣大學110學年度碩士班招生考試試題

科目:電子學(D)

題號:408

共 3 頁之第 2 頁

Fig. 4

- 5. The schematic and small-signal equivalent circuit of a two-stage op amp are shown in Fig. 5(a) and (b), respectively. Assume the magnitude of early voltage $V_A\,$ is identical for all MOSFETs. The circuit parameters are specified as $C_C = 10C_2$, $C_2 \gg C_1$ and $\left(\frac{W}{L}\right)_6 = k \left(\frac{W}{L}\right)_3$.
 - (a) In order to avoid systematic output dc offset, find the ratio of $\left(\frac{w}{L}\right)_7$ and $\left(\frac{w}{L}\right)_5$. [5%]
 - (b) Based on the small-signal equivalent circuit in Fig. 5(b), derive the low-frequency gain, unity-gain frequency (ω_t) . Also find the frequencies of the dominant pole (ω_{P1}) , the second pole (ω_{P2}) and the zero (ω_Z). [10%]
 - (c) It is found that $\omega_t=\omega_Z$ for k=1. Calculate the phase margin of the op-amp for k=2. [10%]

- 6. For the digital circuit in Fig. 6, the NMOS transistor M_1 is used as a pass-transistor login, which passes logic level from V_X to V_Y . Assume $V_{DD}=1.8\,V$, $\mu_n C_{ox}(W/L)=1\,mA/V^2$, $V_t=0.5\,V$, and the parasitic capacitance $\,\mathit{C} = 100\,\mathit{fF}.$ In consideration of the body effect, the threshold voltage of the NMOS device can be specified as $V_t = 0.5 + 0.4 \left(\sqrt{0.7 + V_{SB}} - \sqrt{0.7} \right) V$.
 - (a) For $\,V_{\!X}=0\,V\,$ and $\,V_{\!Y}=1.8\,V\,$, find the charging current through $\,M_1.\,$ [2%]
 - (b) For $V_X=0\ V$ and $V_Y=0.9\ V$, find the charging current through \dot{M}_1 . [2%]
 - (c) Based on the charging currents in (a) and (b), please evaluate the propagation delay $t_{PHL}.\ [1\%]$
 - (d) For $\,V_X=1.8\,V\,$ and $\,V_Y=0\,V$, find the charging current through $\,M_1.\,$ [2%]

題號: 408

國立臺灣大學110學年度碩士班招生考試試題

科目:電子學(D)

節次: 4

題號:408

共 3 頁之第 3 頁

(e) For $\,V_{\rm X}=1.8\,V\,$ and $\,V_{\rm Y}=0.9\,V$, find the charging current through $\,M_1.\,$ [2%]

(f) Based on the charging currents in (d) and (e), please evaluate the propagation delay t_{PLH} . [1%]

試題隨卷繳回