題號: 221

國立臺灣大學 110 學年度碩士班招生考試試題

科目: 工程數學(B)

題號:221

節次: 6

共1頁之第1頁

1. (24%) Solve the following initial value problems where the prime sign indicates differentiation with respect to time t.

- (a) $y' + y = (2\cos t)H(t \pi)$, y(0) = 1 in which H is a Heaviside unit step function. (6%)
- (b) y'' + 3y' + 2y = 0, y(0) = 1, y'(0) = 0. (6%)
- (c) $y'' + 3y' + 2y = \delta(t)$, y(0) = y'(0) = 0 in which δ is a Dirac delta function. (6%)
- (d) $y'' + 3y' + 2y = \frac{1}{1 + e'}$, y(0) = 1, y'(0) = 0. (6%)
- 2. (10%) If f(x) = |x|, $-1 \le x \le 1$, find and write out explicitly the beginning (or lower) four terms of its Fourier series.
- 3. (17%) Transform a third-order linear differential equation y''' + 2y'' y' 2y = 0 into a system of first-order simultaneous linear differential equations, and use only the matrix method to solve the problem.
- 4. (16%) Use Laplace transform to solve the following partial differential equation of vibration:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \ x > 0 \text{ and } t > 0$$

$$u(x,0) = 0$$
, $u_t(x,0) = b$, $x > 0$

$$u(0,t) = t, t > 0.$$

5. (15%) Evaluate the integral

$$\frac{1}{2\pi i}\int_{r-i\infty}^{r+i\infty}\frac{e^{\sigma i}}{\sqrt{\sigma}}d\sigma,$$

where i is the imaginary unit and the value of γ is some constant. Show all details of your derivations.

[Hint:
$$\Gamma(x) = \int_0^\infty e^{-\tau} \tau^{x-1} d\tau$$
 and $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.]

6. (18%) Using the following relation, namely

$$\nabla \cdot \mathbf{B} = \lim_{\Delta V \to 0} \frac{\oint_{A} \mathbf{B} \cdot d\mathbf{A}}{\Delta V},$$

where A is the surface enclosing the volume ΔV , expand and explicitly write out $\nabla \cdot \mathbf{B}$ in spherical $r - \theta - \phi$ coordinates. Note that $\mathbf{B} = B_r \mathbf{i}_r + B_\theta \mathbf{i}_\theta + B_\phi \mathbf{i}_\phi$. Show all details to get full credit.