題號: 56 科目:幾何

節次:

國立臺灣大學 108 學年度碩士班招生考試試題

題號: 56

共 1 頁之第 1 頁

(1) [15 points] Let $\gamma(s): I \to \mathbb{R}^3$ be a curve parametrized by arc-length. Suppose that $\gamma''(s) \neq 0$. Denote by $\{\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}(s)\}$ its Frenet frame. The binormal line at $\gamma(s)$ is the line passing through $\gamma(s)$ with direction $\mathbf{B}(s)$.

Suppose that $\gamma(I)$ lies in a sphere, and that all its binormal lines are tangent to this sphere. Show that γ is an arc of the great circle of that sphere.

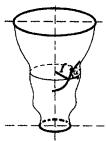
(2) [20 points] Suppose that S is a surface of revolution:

$$S = \{ (f(s)\cos\theta, f(s)\sin\theta, g(s)) \in \mathbb{R}^3 \}$$

where f is a positive, smooth function. For any curve

$$\gamma(t) = (f(s(t))\cos\theta(t), f(s(t))\sin\theta(t), g(s(t)))$$

on S, let $\alpha(t)$ be the angle between $\gamma'(t)$ and the corresponding latitudinal circle; see the picture. (Recall that the latitudinal circle on a surface of revolution is the circle given by s= constant.)



Suppose that $\gamma(t)$ is a geodesic of S. Prove that $f(s(t))\cos\alpha(t)$ is a constant.

(3) [20 points] Let S be the regular surface in \mathbb{R}^3 given by

$$S = \left\{ \left(x, y, \log \frac{\cos x}{\cos y} \right) \in \mathbb{R}^3 \,\middle|\, -\frac{\pi}{2} < x, y < \frac{\pi}{2} \right\} .$$

Calculate the Gaussian curvature and mean curvature of S.

(4) [20 points] For a regular surface $\mathbf{x}=\mathbf{x}(u,v)$, denote by E(u,v), F(u,v) and G(u,v) the coefficients of its first fundamental form, and by e(u,v), f(u,v) and g(u,v) the coefficients of its second fundamental form.

Does there exist a regular surface with E=3, F=1, G=2 and e=v, f=u, $g=\cos u$? Justify your answer.

- (5) Let S be closed (compact without boundary) regular surface in \mathbb{R}^3 of genus 1. Denote by K(p) the Gaussian curvature of S at p. Prove that
 - (a) [15 points] there exists $q_0 \in S$ such that $K(q_0) < 0$;
 - (b) [10 points] there exists $q_1 \in S$ such that $K(q_1) = 0$.

試題隨卷繳回