國立臺灣大學 102 學年度碩士班招生考試試題

科目:近代物理學(A)

頁

※ 注意:請於試卷上依序作答,並應註明作答之部份及其題號。

I. Do problems 1 - 4 by filling in the blanks:

- 1: (15%) The yellow light of sodium vapor lamps frequently employed in highway illumination is a spectral line arising from the 3p to 3s transitions in 11 Na.
 - (a) Given that $E_{3p} E_{3s} = 2.1 \,\text{eV}$, what is the wavelength of this line?
 - (b) The line is split by the spin-orbit interaction into two components. Given that the spin-orbit interaction splits the 3p level by an energy $\Delta E = 2.1 \times$ 10⁻³ eV, evaluate the separation in wavelength of the two components of the line. Note that you are not told by how much the 3s level is split by the spin-orbit

interaction: (c) Specify the selection rules under which the transitions involved in emission of the two components of the line are allowed.

- 2. (10%) Consider two electrons in a spin singlet state.
 - (a) If a measurement of the spin of one of the electrons shows that it is in a state with $s_z = \hbar/2$, what is the probability that a measurement of the z-component of the spin of the other electron yields $s_z = \hbar/2$?

(b) If a measurement of the spin of one of the electrons shows that it is in a state with $s_y = \hbar/2$, what is the probability that a measurement of the x-component of the spin yields $s_x = -\hbar/2$ for the second electron?

3. (10%) Consider the capture of a π^- by a deuteron (which is the nucleus of deuterium atom and is denoted as d). A slow pion in liquid deuterium loses energy by a variety of mechanisms, until it finally ends up in one of the Bohr orbits about (pn) nucleus, and is captured through the action of the nuclear forces by the reaction

$$\pi^- + d \rightarrow n + n$$
.

The pion has spin 0 and negative parity whereas the deuteron has spin 1 and positive parity. Also, the parity of a two-particle orbital state of angular momentum l has parity $(-1)^{i}$. Note that, in the reaction above, the total angular momentum, charge, and parity are conserved.

- (a) Assume that the pion is captured from the lowest Bohr orbit. In terms of the spectroscopic notatin $^{2S+1}\hat{L_J}$, the state of the two neutrons must be _
- (b) Assume that the pion is captured from a P orbit. In terms of the spectroscopic notatin $^{2S+1}L_J$, the state of the two neutrons must be _

題號: 62

國立臺灣大學 102 學年度碩士班招生考試試題

科目:近代物理學(A)

竹口,又门初生子(几)

共 夕 頁之第 夕 頁

4.	(15%) Consider an x-ray beam with wavelength $\lambda=1.00$ Å incident on free electrons. If the radiation scattered from free electrons is viewed at 60° to the incident beam:
	(a) What is the Compton wavelength shift of the x-ray?
	(b) What kinetic energy is given to a recoiling electron?
	(c) What percentage of the incident photon energy is lost in the collision?

II. Do problems 5 - 7 by giving relevant calculation details:

- 5. A particle with mass m is in an even mixture of the ground state and the 1st excited state in a one dimensional infinite potential well with width a. Determine its probability density function $P(x,t) = \Psi^*(x,t)\Psi(x,t)$, where $\Psi(x,t)$ is the corresponding wave function (5%). What is the expected energy and energy uncertainty of this particle (5%)? How about the expected particle momentum, p(t), and related uncertainty (10%)?
- 6. There are many experiments played an important role in the development of modern physics. Describe the set-up and experimental findings for the following ones: (a) Frank-Hertz experiment (5%), (b) Michelson-Morley experiment (5%), and (c) Stern-Gerlach experiment (5%).
- 7. Neutrino mixing can be explained by a simple theoretical model that their mass eigenstates and flavor states are not coincides. So a well defined flavor state produced at time 0 along with a charged lepton in weak interactions should be described by a superposition of different mass states. Assuming a special case that only two flavors needs to be considered and the mixing angle is θ , the following relations will hold: $\nu_{\alpha} = \nu_{1} \cos \theta \nu_{2} \sin \theta$ and $\nu_{\beta} = \nu_{1} \sin \theta + \nu_{2} \cos \theta$, where ν_{α}/ν_{β} and ν_{1}/ν_{2} stand for the flavor and mass eigenstates, respectively. The plane wave description of a mass eigenstate can be expressed as $|\nu_{i}(t)\rangle = e^{-i(E_{i}t-\bar{p}_{i}\bar{r})/\hbar}|\nu_{i}(0)\rangle$, where E_{i} is the energy of the mass eigenstate i, t is the propagation time, \bar{p}_{i} is the neutrino momentum and \bar{r} is the position relative to the origin, i.e. the production point by default.
 - (a) Assuming the ultra-relativistic case, $E_i \sim p_i c >> m_i c^2$, show that $|\nu_i(L)>= e^{-im_i^2 c^3 L/(2Eh)}|\nu_i(0)>$, where L stands for the propagation distance from origin and E is the measured neutrino energy (5%).
 - (b) Find the flavor changing probability $P_{\alpha \to \beta}$ as a function of L, m_1 , m_2 , θ and E, assuming the tagged flavor is α at t = 0 (10%).

試題隨卷繳回