國立臺灣大學 112 學年度轉學生招生考試試題

題號:15

科目:微積分(A)

題號:15

共 / 頁之第 / 頁

• Calculators are NOT allowed in the exam.

Question 1. [10 pts] Let $f : [a,b] \to \mathbb{R}$ be a one-to-one and continuous function. If f(a) < f(b), show that f is increasing.

Question 2. [20 pts] Let Ω be the domain in the xy-plane bounded by the x-axis and one arc of the cycloid

$$(x,y) = (\theta - \sin \theta, 1 - \cos \theta), \ \theta \in [0, 2\pi].$$

Find the volume of the solid

$$\{(x, y, z) \in \mathbb{R}^3 : 0 < z < y^2, (x, y) \in \Omega\}.$$

Question 3. [20 pts] Suppose that the cubic equation $a_0 + b_0x + c_0x^2 + d_0x^3 = 0$ has three distinct roots $\alpha_0 < \beta_0 < \gamma_0$. Given $\epsilon > 0$, prove that there exists $\delta > 0$ such that for every $(a, b, c, d) \in \mathbb{R}^4$ with

$$(a-a_0)^2 + (b-b_0)^2 + (c-c_0)^2 + (d-d_0)^2 < \delta^2$$

the equation $a + bx + cx^2 + dx^3 = 0$ has three roots α , β , and γ satisfying

$$(\alpha - \alpha_0)^2 + (\beta - \beta_0)^2 + (\gamma - \gamma_0)^2 < \epsilon^2.$$

Question 4. [20 pts] For each $\epsilon \in (0,1)$, let

$$S_{\epsilon} = \left\{ (x, y, z) \in \mathbb{R}^3 : \epsilon < \sqrt{x^2 + y^2} < 1, -1 + \epsilon < z < 1 \right\}.$$

Evaluate

$$\lim_{\epsilon \to 0+} \iiint_{S_\epsilon} \frac{z}{\sqrt{x^2 + y^2} \, \ln \left(1 + x^2 + y^2 \right)} dx \, dy \, dz.$$

Question 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded and continuous function. For every $k \in \mathbb{N}$ and $x \in \mathbb{R}$, define

$$f_{k}(x) = \min_{y \in \mathbb{R}} \left(f(y) + k |y - x| \right).$$

- (a) [10 pts] Show that $f_k(x)$ is well-defined (i.e., the minimum does exist).
- (b) [10 pts] Show that $f_k : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous.
- (c) [10 pts] Prove that on every finite interval, f_k converges to f uniformly as $k \to \infty$.

試題隨卷嫩回