國立臺灣大學111學年度轉學生招生考試試題

題號: 23

科目:微積分(C)

題號: 23

共 2 頁之第 |

Instructions:

- Use of any device with computer algebra system during the exam will result in zero points.
- Each answer for problems 1 through 8 need to be clearly labeled with BOTH the problem number and the blank number.
- Show all your work for problems 9 and 10. Make sure to label your final answer.
- Problems 1 through 8 will be graded based on correctness only (5 points each). Problems 9 and 10 (10 points each) will offer partial credits for the work shown.
- 1. (10%) Evaluate the limits.
 - $\lim_{x \to 0} \frac{\ln(1 3x^2)}{e^{-x} + x \cos x} = \frac{1}{2}$. $\lim_{x \to \infty} \frac{\ln(1 3x^2)}{e^{-x} + x \cos x} = \frac{1}{2}$
- 2. (10%) Consider the graph of the function $f(x) = \frac{\sqrt{x^4 + 2x^3} \sqrt{x^4 x^3}}{\sqrt{x^2 5x}}$. Find all vertical asymptotes. (3) (Hint: find the domain) Find all horizontal asymptotes. (4)
- 3. (10%) Consider the curve given by the equation $x^3 + y = 9x\sqrt[3]{y}$. Find an equation of the tangent line at the point (4,8). (5) Find $\frac{d^2y}{dx^2}$ at the point (4,8). _____(6)
- 4. (10%) Let f be a smooth function and $F(x) = \int_{\sqrt{2}}^{\sqrt{2}x} \frac{tf(t)}{e^{t^2}} dt$. Find F'(x). (Your answer would contain f) Suppose that $F(x) = f(\sqrt{2x})$. Solve the integral equation for f. (8)
- 5. (10%) Let R be the region under $y = \sqrt{x}$, above $y = \ln x$, and between x = 1 and x = 2. Find the volume of the solid obtained by rotating R about the x-axis. (9) . Find the volume of the solid obtained by rotating R about the line x = 4. (10)
- 6. (10%) Evaluate $\int \left(\frac{1}{x} + \tan^{-1}x \frac{\pi}{2}\right) dx = \underline{\qquad (11)}$ Determine if the improper integral $\int_{1}^{\infty} \left(\frac{1}{x} + \tan^{-1}x - \frac{\pi}{2}\right) dx$ is convergent or divergent. Evaluate the improper integral if it is convergent. (12)

見背面

國立臺灣大學111學年度轉學生招生考試試題

題號: 23

題號: 23

科目:微積分(C)

7. (10%) Evaluate the given double integrals.

$$\bullet \int_0^4 \int_0^{\sqrt{32-2y^2}} y \cos(x^3 - 96x) \, dx \, dy = \underline{\qquad (13)} \\
\bullet \int_0^4 \int_0^{\sqrt{32-2y^2}} \sin(x^2 + 2y^2) \, dx \, dy = \underline{\qquad (14)} \\
\bullet.$$

•
$$\int_0^4 \int_0^{\sqrt{32-2y^2}} \sin(x^2+2y^2) \ dx \ dy =$$
 (14)

8. (10%) Let
$$f(x) = e^{x^3} + e^{-x^3}$$
.

Find the Taylor Series of f(x) at x = 0. (15)

Use the Taylor Series to find the value of $f^{(2022)}(0)$. (16)

- 9. (10%) Sketch the curve $y = (x-4)\sqrt[3]{x^2}$. Label the following information: (a) Intervals of Increase/Decrease (b) Concavity (c) Local Extrema.
- 10. (10%) Use the method of Lagrange Multipliers to find the point(s) on the surface $y^2 = 16 + xz$ that are closest to the origin.

試題隨卷繳回