國立臺灣大學111學年度轉學生招生考試試題

題號: 17 題號: 17

科目:微積分(B) 共 2 頁之第 1 頁

Any device with computer algebra system is prohibited during the exam.

Section A. Fill in the blanks.

- Only answers will be graded.
- Label clearly your answer to each blank with the number of each blank on the answer sheet.
- 5 points are assigned to each blank.

1. (a)
$$\lim_{x\to 0} \frac{5\cot(x)+6\sin\frac{1}{x}}{7\csc(x)-8\sin\frac{1}{x}} = \boxed{(1)}$$

(b)
$$\lim_{x\to 0} \left(e^{2x}-2x-2x^2\right)^{\frac{1}{x^3}} = \boxed{(2)}$$

(c)
$$\lim_{n\to\infty} \sum_{k=1}^{n} \frac{kn+n^2}{(k^2+kn+n^2)^{\frac{3}{2}}} = \boxed{(3)}$$

2. (a) Let
$$f(x,y) = (x+2)^{y+2}$$
. Then $\frac{d^2}{dt^2} f(t,t^2) \Big|_{t=0} = \boxed{(4)}$.

(b) Let
$$g(x) = \frac{1}{\sqrt{x^2 + 2x + 5}}$$
. Then $g^{(6)}(-1) = \boxed{(5)}$.

3. Consider a function $f:(-\pi,\pi)\to\mathbb{R}$ defined by

$$f(x) = \begin{cases} \sin x + \frac{ax}{\sin x} & \text{if } -\pi < x < 0 \\ x^2 + bx + 5 & \text{if } 0 \le x < \pi \end{cases}$$

If f is differentiable on $(-\pi, \pi)$, then $(a, b) = \boxed{(6)}$

4. Consider the parametric curve $x = 2t^2 + 1$, y = 4t. Let P be the point $(2p^2 + 1, 4p)$. The greatest value of p such that the normal to the curve at P passes through (31, -24) is $p = \boxed{(7)}$.

5. Let
$$f(x, y, z) = \int_{z}^{x-y^2} \frac{e^{t^2}}{t^2+4} dt$$
. The linearization of $f(x, y, z)$ at $(1, 1, 0)$ is $L(x, y, z) = \boxed{(8)}$

6. (a)
$$\int_0^1 x(\sin x + \sin^{-1} x) dx = (9)$$

- (b) Let D be the region enclosed by the curve $y = (10x x^2 21)^{\frac{1}{4}}$ and the x-axis. The volume of the solid obtained by revolving D about the x-axis is (10).
- 7. Let $f(x,y) = 2x^3 12xy + y^3 + 13$. Let P = (p,q) be the point on \mathbb{R}^2 at which the rate of change of f(x,y) in the direction $\mathbf{i} + \mathbf{j}$ is the smallest. Then $(p,q) = \boxed{(11)}$.

8. (a)
$$\int_1^e \int_{\ln x}^1 \frac{1}{(e^y - y)^2} dy dx = [(12)]$$

(b) Let
$$R = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4, \ x \ge 0, \ 0 \le y \le 1\}$$
. Then $\iint_R \frac{xy}{x^2 + y^2} \, dA = \boxed{\textbf{(13)}}$

- 9. (a) The work done by the force field $\mathbf{F}(x,y) = (\sqrt{1+x^3})\mathbf{i} + (xy)\mathbf{j}$ in moving a particle along a triangular path with vertices (0,0), (1,0), (2,2) counter-clockwisely is (14).
 - (b) Let S be part of the cone $z = \sqrt{2x^2 + 2y^2}$ that lies below the plane x + z = 1. Then $\iint_S x \, dS = \boxed{(15)}$.
 - (c) Let D be a closed surface in \mathbb{R}^3 , oriented outward. The maximum flux of the vector field

$$\mathbf{F}(x, y, z) = (x + 2x^3z)\mathbf{i} - y(x^2 + z^2)\mathbf{j} - (3x^2z^2 + 4y^2z)\mathbf{k}$$

among all possible choices of D is (16)

10. The greatest value of p such that the series $\sum_{n=1}^{\infty} (-1)^n \cdot \tan\left(\frac{1}{\sqrt{n^p}}\right) \cdot \ln\left(1 + \frac{1}{n^{2p}}\right)$ converges conditionally is $p = \boxed{(17)}$

國立臺灣大學111學年度轉學生招生考試試題

題號: 17

科目:微積分(B)

共 2 頁之第 2 頁

題號: 17

Section B. Long Question.

- Solve the following problem. You need to write down a complete and correct argument to receive full credits.
- Your work is graded on the quality of your writing as well as the validity of the mathematics.
- 15 points are assigned to this question.
- 1. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{x \cdot \sin(y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}.$$

- (a) Is f continuous at (0,0)? Justify your answer.
- (b) Let $\mathbf{u} = a\mathbf{i} + b\mathbf{j}$ be a unit vector. Find the directional derivative of f at (0,0) in the direction \mathbf{u} . Express your answer in terms of a and b.
- (c) Find the direction(s) that f changes the most rapidly at (0,0).

試題隨卷繳回