國立臺灣大學 113 學年度碩士班招生考試試題

科目: 生物化學(C)

題號: 353

節次: 6

共 5 页之第 1 页

一、單選題 (40%):每題 2 分,請於試卷內之「選擇題作答區」依序作答。

- 1. When mitochondria are actively carrying out aerobic respiration
 - (A)the pH of the matrix is greater than the pH of the intermembrane space.
 - (B) the pH of the matrix is less than the pH of the intermembrane space.
 - (C) the pH of the matrix is about the same as the pH of the intermembrane space.
 - (D)the pH of the matrix versus the intermembrane space has nothing to do with whether not aerobic respiration is occurring.
- 2. The fate of pyruvate produced during glycolysis depends primarily on the availability of
 - (A)NAD+ to keep the pathway going.
 - (B)molecular oxygen.
 - (C)ADP for conversion to ATP.
 - (D)coenzyme A for further metabolism of pyruvate.
 - (E) phosphoric acid for the synthesis of ATP.
- 3. In humans, pyruvate can be converted to
 - (A)acetyl-CoA only.
 - (B) lactate only.
 - (C)ethanol only.
 - (D)acetyl-CoA and lactate.
- 4. The phosphorylation of glucose to glucose 6-phosphate
 - (A)is so strongly exergonic that it does not require a catalyst.
 - (B) is an exergonic reaction not coupled to any other reaction.
 - (C) is an endergonic reaction that takes place because it is coupled to the exergonic hydrolysis of ATP.
 - (D)is an exergonic reaction that is coupled to the endergonic hydrolysis of ATP.
- 5. Which of the following is **not** a component of the pyruvate dehydrogenase complex?
 - (A)pyruvate dehydrogenase
 - (B)dihydrolipoyl transacetylase
 - (C)dihydrolipoyl dehydrogenase
 - (D)pyruvate dehydrogenase kinase
 - (E) aconitase
- 6. The key element at the center of chlorophyll is
 - (A)chlorine.
 - (B)copper.
 - (C)iron.
 - (D)magnesium.
 - (E) manganese.

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 生物化學(C)

題號: 353

共 5 页之第 2 页

7. The terminal electron acceptor during the light phase of photosynthesis in green plants is

- (A)Hydrogen ($H_2 \rightarrow H_2O$).
- (B)NAD $^+$ (\rightarrow NADH).
- (C)NADP⁺ (\rightarrow NADPH).
- (D)Oxygen ($O_2 \rightarrow H_2O$).
- (E) Sulfur (\rightarrow H₂S).

8. Which group of small molecules best fit the boxes associated with the reaction shown?

- 9. Which of the following statements is true of the glycolytic pathway?
 - (A)Each reaction in the glycolytic pathway is catalyzed by a single enzyme, acetyl CoA dehydrogenase.
 - (B) In each reaction in the pathway, one molecule of ATP is hydrolyzed for each molecule of glucose that is metabolized.
 - (C)In each reaction in the glycolytic pathway, two NADP molecules are released that make coupled exergonic reactions possible.
 - (D)Each reaction has a net gain of three ATP molecules for each glucose molecule processed in glycolysis.
- 10. Which of the reactions of the citric acid cycle requires FAD as a coenzyme?
 - (A)the conversion of isocitrate to α-ketoglutarate
 - (B) the conversion of citrate to isocitrate
 - (C) the conversion of succinate to fumarate
 - (D)the conversion of malate to oxaloacetate
 - (E) none of these
- 11. What is the relationship between glycolysis and cancer?
 - (A)cancer cells lack a glycolytic pathway
 - (B)cancer cells use a modified version of glycolysis
 - (C) cancer cells exhibit a much higher level of anaerobic glycolysis than normal cells
 - (D)none of these

接次頁

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 生物化學(C)

節次: 6

題號: 353

共 5 页之第 3 页

- 12. In the reoxidation of QH₂ by purified ubiquinone-cytochrome c reductase (Complex III) from heart muscle, the overall stoichiometry of the reaction requires 2 mol of cytochrome c per mole of QH₂ because:
 - (A) cytochrome c is a one-electron acceptor, whereas QH₂ is a two-electron donor.
 - (B) cytochrome c is a two-electron acceptor, whereas QH₂ is a one-electron donor.
 - (C)cytochrome c is water soluble and operates between the inner and outer mitochondrial membranes
 - (D)heart muscle has a high rate of oxidative metabolism, and therefore requires twice as much cytochrome c as QH_2 for electron transfer to proceed normally.
 - (E) two molecules of cytochrome c must first combine physically before they are catalytically active.
- 13. During strenuous exercise, the NADH formed in the glyceraldehyde 3-phosphate dehydrogenase reaction in skeletal muscle must be reoxidized to NAD⁺ if glycolysis is to continue. The most important reaction involved in the reoxidation of NADH is:
 - (A)dihydroxyacetone phosphate → glycerol 3-phosphate.
 - (B)glucose 6-phosphate → fructose 6-phosphate.
 - (C) isocitrate $\rightarrow \alpha$ -ketoglutarate.
 - (D)oxaloacetate → malate.
 - (E) pyruvate \rightarrow lactate.
- 14. The essential enzyme for the C₄ pathway is
 - (A)ribulose bisphosphate carboxylase:oxygenase
 - (B)phosphoenolpyruvate carboxylase
 - (C) ferredoxin-thioredoxin reductase
 - (D)glyoxylate oxygenase
 - (E) none of these
- 15. How do uncoupling agents affect the electron transport chain and oxidative phosphorylation?
 - (A)They block the flow of electrons, so protons aren't pumped, and ATP synthesis ceases.
 - (B) They remove electrons from the chain, so less protons are pumped, and ATP synthesis decreases.
 - (C) They block the flow of protons through the ATP synthase, so ATP synthesis ceases. Electron flow and proton pumping are also halted as a result.
 - (D)They provide an alternative path for protons to re-enter the mitochondrial matrix, so ATP synthesis decreases. Electron flow and proton pumping are not affected.
- 16. Which of the following statements about sterols is true?
 - (A)Cholesterol is the principal sterol in fungi.
 - (B)Sterols are found in the membranes of all living cells.
 - (C) Sterols are soluble in water, but less so in organic solvents such as chloroform.
 - (D)All sterols share a fused-ring structure with four rings.
 - (E) The principal sterol of animal cells is ergosterol.
- 17. An example of a glycerophospholipid that is involved in cell signaling is:
 - (A) arachidonic acid.
- (B) ceramide.
- (C) testosterone.
- (D) phosphatidylinositol.
- (E) vitamin A (retinol).

題號: 353 國立臺灣大學 113 學年度碩士班招生考試試題

科目: 生物化學(C)

題號:353

節次: 6

共 5 页之第 4 页

18.The inner membran	e of mitochond	ria is abou	nt 75% lipid and 25%	protein by weight.	How many molecules of membrane lipid
are there for each mole	cule of protein	? (Assum	e that the average pr	rotein is Mr 50,000 ar	nd the average lipid is 750.)
(A) 10	(B) 100	•	(C) 150	(D) 200	(E) 1000
19. Which of the follow	ving is the sour	ce of the t	wo carbon fragments	s in fatty acids biosyr	nthesis?
(A) acetyl CoA	(B) malony		(C) palmitic acid	(D) propionyl C	
20 Glutamine synthetas	se converts	to	whereas glutamate	e synthase converts _	to
(A)formate; glutan	nine; ammonia;	glutamate	;		
(B)glutamate; gluta	amine; a-ketog	lutarate; g	lutamate		
(C)asparagine; glui	tamine; α -ketog	glutarate; į	glutamate		
(D) α -ketoglutarate	; glutamine; ox	aloacetic a	acid; glutamate		
(E) α-ketoglutarate			_		
二、問答題 (60%)):分數標示	於各題	,請於試卷內之	「非選擇題作答図	国」標明題號依序作答。
Please briefly descr					
1. Troube offerly delier	ioo mo process	or photor	cophation and expiai	n why it is important	in plants. (0%)
2. What is gluconeoge	nesis, and wha	t useful pu	rposes does it serve	in people? (5%)	
				, ,	
3. What are the biolog	ical functions of	of the pent	ose phosphate pathw	ay? (4%)	
4. Discuss three lines	of evidence tha	t support t	he theory that mitoc	hondria evolved fron	n endosymbiontic bacteria. (5%)
5. Which amino acid po	ossesses a side	chain with	a pKa value approxi	imately 6.0? Kindly i	illustrate this amino acid (2%)
6. Could you identify th	ne two amino a	cids whose	e side chain groups h	ave a pKa value clos	e to 4.0? Additionally, please illustrate
these amino acids. (2		•			
7. Which types of amin	o acids are abu	ndant in h	istone proteins, maki	ng them effective for	r DNA binding? Please provide a list of
these amino acids an				•	So I source provide a libror
R Revond the common	v recognized ?	0 amino a	oids there exist lesses	om lemoverm anothernalles a	occurring amino acids (numbered 21 and
					on of proteins derived from this amino
acid? (4%)			o una oripiani alo 1010	or closogical function	on or proteins derived from this annino
					•
9. Please describe the re	eason behind th	e necessit	y of using organic so	lvents for lipid extra	ction from tissues. (2%)
10. Please describe thre	e roles of triac	lglycerols	s play in mammals a	nd one role they serv	e in higher plants. (4%)
				and noncovalent intains stabilization? (8%	eractions. Could you describe and explain
				•	,
12. Explain the differen	ces between in	tegral and			
		•	接力	で百	

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 生物化學(C)

趙號:353

共 5 页之第 5 页

節次: 6______

- 13. Why is it important that *E. coli* ribonucleotide reductase has two allosteric sites? (4%)
- 14. What function do phospholipases serve in the venom of venomous snakes? (2%)
- 15. After isolating an antibody from cell culture medium, you intend to assess its purity and conformation using SDS-PAGE and Native-PAGE analyses. Suppose the antibody is 99% pure. Please illustrate the expected outcomes on SDS-PAGE and Native-PAGE for this antibody, which consists of two heavy chains and two light chains with molecular weights of 50 kDa and 25 kDa, respectively. (4%)

試題隨卷繳回