題號: 48

國立臺灣大學 112 學年度碩士班招生考試試題

科目:高等微積分

題號: 48

1. (15 points)

Given two sets $A, B \subset \mathbb{R}^n$ and define their distance by

$$d(A, B) = \inf\{|x - y| : x \in A, y \in B\}.$$

- (1) Prove that if one of the sets A, B contains a point in the closure of the other one, then d(A,B)=0.
- (2) If A is compact, B is closed and $A \cap B = \emptyset$, then d(A, B) > 0.
- (3) If A, B are both closed and disjoint. Prove or disprove d(A, B) > 0.

2. (15 points)

Let $S \subset \mathbb{R}^n$ be a compact set and $\{U_i\}_{i=1}^{\infty}$ be an open covering of S. Prove that there exists a number r>0 such that for any two points $x,y\in S$ and |x-y|< r, then x,y are both contained in U_i for some i.

3. (15 points)
Let $f(x) = x^2 - x + \frac{1}{6}$ on [0, 1] and extend to \mathbb{R} with period 1.
(1) Prove that $f(x) = \frac{1}{2\pi^2} \sum_{n \neq 0} \frac{1}{n^2} e^{2\pi i n x}$.

- (2) Prove that for any integer $M \ge 1$, we have $\sum_{m=1}^{M} (1 \frac{m}{M+1}) f(mx) \ge \frac{-1}{2}$.

4. (10 points)

Let S be the surface $\{(x,y,z): x^2+y^2=z^2; 0 \le z \le 1\}$ and be oriented so that the normal points upward. Let $F(x,y,z)=(x^2,yz,y)$. Compute $\int \int_S F \cdot n dA$.

5. (15 points)

Suppose f(x) is defined on $[1, \infty)$ and is positive. Assume that f is monotone and $f(x) = o(\int_1^x f(t)dt)$ when $x \to \infty$ (little o). Prove that $f(x)^{1/2} = o(\int_1^x f(t)^{1/2}dt)$ when $x \to \infty$.

6. (15 points)

Suppose f and g are all polynomials of degree $\leq d$. If for some C, c > 0 so that we have $|f(x) - g(x)| \leq C|x|^{d+1}$ for any $|x| \leq c$. Do we have f = g? Justify your answer.

Assume that $a_n > -1$ for all n. Prove the following:

- (1) $\sum a_n$ converges absolutely if and only if $\sum \log(1+a_n)$ converges absolutely. (2) Let $a_n = \frac{(-1)^{n+1}}{\sqrt{n}}$. Then $\sum a_n$ converges conditionally but $\sum \log(1+a_n)$ diverges.

試題隨卷繳回