題號: 221

國立臺灣大學 112 學年度碩士班招生考試試題

科目: 流體力學(A)

節次: 7

題號: 221 共 2 頁之第 1 頁

1. Consider the situation depicted below. Wind strikes the side of a simple residential structure and is deflected up over the top of the structure. Assume the following: two-dimensional steady inviscid constant-density flow, uniform upstream velocity profile, linear gradient in the downstream velocity profile (velocity U at the upper boundary and zero velocity at the lower boundary as shown), and constant pressure on the upper boundary of the control volume (streamline).

(A) (5 pts) Determine h₂ in terms of U and h₁.

- (B) (15 pts) Determine the direction and magnitude of the horizontal force on the house per unit depth into the page in terms of fluid density ρ , the upstream velocity U, and the height of the house h_1 .
- (C) (5 pts) How do the velocity profiles change if the flow is viscous?

- 2. An inclined waterway shown in the figure has a large constant width (in the direction out of the page). The waterway is inclined at an angle relative to the horizontal. At station-1 the water depth is h_1 , the flow velocity at the surface $(x_2 = h_1)$ is $u_1=U_{s1}$ and the velocity profile is observed to be linear with a constant shear rate $du_1/dx_2=S_1$. The flow is steady and can be assumed to be inviscid. Station-2 is located L downstream from station-1. Assume that h_1 , $h_2 \ll L$.
 - (A) (5pts) What is the flow velocity, U_{s2} , at the water surface at station-2? Now suppose that the velocity profile at station-2 is also linear.
 - (B) (10 pts) What is the shear rate, S_2 , at station-2?
 - (C) (10 pts) What is the water depth, h_2 , at station-2?

題號: 221

國立臺灣大學 112 學年度碩士班招生考試試題

科目: 流體力學(A)

題號:221

節次: 7

共2頁之第2頁

3. As shown in the figure, a rotating lawn sprinkler has water entering through its base at a steady rate of 800 ml/s. The exit outlet of each of the two nozzles is 25 mm² and the flow leaving each nozzle is in the tangential direction. The radius from the rotation axis to each nozzle's centerline is 200 mm. Please determine

- (A) (5 pts) the resisting torque required to hold the sprinkler head stationary,
- (B) (10 pts) the absolute velocity of the fluid leaving each nozzle associated with the sprinkler rotating with a constant speed of 500 rev/min, and
- (C) (10 pts) the speed of rotation of the sprinkler head if no resisting torque is applied.

- 4. Water flows downward at a rate of 3.6 liters/min in a 40-mm-diameter vertical flow pipe. Please determine
 - (A) (5 pts) if the flow is laminar or turbulent,
 - (B) (5 pts) the pressure drop over a distance of 10 meters,
 - (C) (5 pts) the friction head loss per unit length, and
 - (D) (10 pts) the shear stress at the pipe wall when μ = 1.14 \times 10 $^{-6}$ Ns·m².