題號: 55 國立臺灣大學 111 學年度碩士班招生考試試題

科目:微積分(A)

題號: 55

共 2 頁之第 1 頁

Instructions:

- · Each answer need to be clearly labeled on the answer sheet.
- Problems 1 to 16 are worth 5 points each. Only the answer will be graded.
- Problems 17 and 18 are worth 10 points each. Show all work and explanations.
- Use of any device with computer algebra system during the exam is not allowed.
- 1. Compute the limit $\lim_{x\to\infty} \left(\cos\left(\frac{2}{x}\right) + \frac{2}{x^2}\right)^{x^4} = \underline{(1)}$
- 2. Compute the limit $\lim_{x\to 0^+} \frac{\tan^{-1}(2x) \tan(2x)}{\sin(x) x} = \underline{\qquad (2) \qquad }$
- 3. The graph of $f(x) = x^2 e^{-2x}$ has two inflection points. Find one: ___(3)__.
- 4. If $\int_3^{2x+1} e^{f(t)+1} dt = \ln x$, then $f(4) = \underline{\qquad (4)}$.
- 5. Calculate the integral $\int_0^3 \frac{x^3}{x^2 + 9} dx = \underline{\qquad (5) \qquad }.$
- 6. Calculate the integral $\int_0^{\ln 5} \frac{dx}{e^x + 1} = \underline{\qquad (6)}$
- 7. Calculate the integral $\int_0^3 \sqrt{4x-x^2} dx = \underline{(7)}$.
- 8. Suppose that $\frac{dy}{dx} + 2xy = 3x$ with y(0) = 5, then y(2) = 8.
- 9. Let R be the region below the curve $y = \sin(x^2)$ when $0 \le x \le \sqrt{\pi}$ and V be the volume of the solid obtained by rotating R about the y-axis. V = (9).
- 10. The interval of convergence of $\sum_{n=0}^{\infty} \frac{(3-5x)^n}{2^n \sqrt{n+1}}$ is ____(10)___.
- 11. Find the sum $\sum_{n=5}^{\infty} \frac{1}{n} \left(\frac{2}{3}\right)^n = \underline{(11)}$.
- 12. Find the sum $\sum_{n=0}^{\infty} (-1)^n \frac{1+3^n}{n!} = \underline{\qquad (12)}$.
- 13. Let $\vec{r}(t) = (\cos(e^t), \sin(e^t), 3e^t), -2 \le t \le 2$. The length of the curve is ____(13) _.

題號: 55

國立臺灣大學 111 學年度碩士班招生考試試題

科目:微積分(A)

共 2 頁之第 2 頁

節次: 4

14. The maximum value of the function $f(x,y) = 3x^2 + 4y^2$ inside the region $x^2 + y^2 \le 9$ is (14).

15.
$$\int_0^3 \int_0^2 \int_{y/2}^1 x^2 y \cos(z^3 - 1) \, dz \, dy \, dx = \underline{\qquad (15) \qquad}.$$

- 16. The work done by the force field $\vec{F}(x,y) = (x^2y)\vec{i} (xy^2)\vec{j}$ in moving a particle clockwise around the circle $x^2 + y^2 = 4$ once is ___(16) __.
- 17. A rectangular box without a lid is to be made from 6 m² of cardboard. Find the maximum volume of such a box.
- 18. Evaluate the outward flux of the vector field $\vec{F}(x,y,z) = (z,y,x)$ over the unit sphere $x^2 + y^2 + z^2 = 1$ with two methods: (a) Divergence Theorem and (b) Surface Integral.

試題隨卷繳回