109 學年度碩士班招生考試試題

 \bullet Unless otherwise specified, everything is over $\mathbb R$

- The ordinary inner product of \mathbb{R}^n is denoted by $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$
- S_n is the space of $n \times n$ square matrices.
- \mathcal{P} is the vector space of polynomials of one variable x with real coefficients.
- Dual space V^* of real vector space V is $\{\alpha \mid \alpha : V \to \mathbb{R}, \alpha \text{ is linear}\}$.
- (1) [16%] Va linear transformation $T: V \to V$ by $\subset \mathbb{R}^4$ is a subspace span by $\vec{\mathbf{u}} = \begin{bmatrix} 1 & -4 & 8 & 3 \end{bmatrix}^t$ and $\vec{\mathbf{v}} = \begin{bmatrix} 2 & -2 & 10 & 3 \end{bmatrix}^t$. Define

$$T(\vec{\mathbf{u}}) = 5\vec{\mathbf{u}} + 2\vec{\mathbf{v}}$$

$$T(\vec{\mathbf{v}}) = 7\vec{\mathbf{u}} + \vec{\mathbf{v}}$$

Is T self-adjoint with respect to <, >? Demonstrate your answer. The induced inner product of V from \mathbb{R}^4 is defined by $\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle = \vec{\mathbf{x}} \cdot \vec{\mathbf{y}}, \vec{\mathbf{x}}, \vec{\mathbf{y}} \in V$.

- (2) [16%] $\mathcal{P}_3 \equiv \{f(x) \in \mathcal{P} | \deg(f(x)) \leq 3\}$. Let \mathcal{P}_3^* be the dual space of \mathcal{P}_3 . For any $a \in \mathbb{R}$, define $\widehat{a} \in \mathcal{P}_3^*$ by $\widehat{a}(f(x)) = f(a)$ and $d\widehat{a} \in \mathcal{P}_3^*$ by $d\widehat{a}(f(x)) = f'(a)$.
- a. Find the basis $\phi_{-1}(x)$, $\phi_0(x)$, $\phi_d(x)$, $\phi_1(x)$ of \mathcal{P}_3 such that $\widehat{-1}$, $\widehat{0}$, $\widehat{d0}$, $\widehat{1}$ are their corresponding dual basis.
- b. Define $I \in \mathcal{P}_3^*$ by $I(f(x)) = \int_{-1}^1 f(x) dx$. Find $\alpha, \beta, \gamma, \epsilon \in \mathbb{R}$ such that
- \circ If there is $f(x) \in \mathcal{P}_3$ such that f(-1) = -2, f(0) = 2, $f'(0) = \pi$, f(1) = -6, $I = \alpha \widehat{-1} + \beta \widehat{0} + \gamma d\widehat{0} + \epsilon \widehat{1}$

evaluate $\int_{-1}^{1} f(x) dx$.

$$[3] \ [16\%] \ \Gamma = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix} \in \mathcal{S}_n. \ \ \mathcal{C}_n = \{X \mid X\Gamma = \Gamma X\} \ \text{is a subspace of } \mathcal{S}_n.$$

Determine dim \mathcal{C}_n and find a basis of \mathcal{C}_n .

- (4) [16%] $A \in \mathcal{S}_n$. Define m_{ij} to be the determinant of the submatrix formed by adj $A = [(-1)^{i+j} m_{ji}]$. Suppose A is not invertible, show that rank of adj A is ≤ 1 . deleting the i-th row and j-th column of A. Define the classical adjoint matrix When is the rank of adj A = 1?
- 5 [16%] If $A=[a_{ij}]\in\mathcal{S}_n$ is positive definite, show that $\det A\leq a_{11}a_{22}\cdots a_{nn}$.
- 6) [20%] $A \in \mathcal{S}_n(\mathbb{C})$. Over \mathbb{C} , show the following two statements are equivalent.
- The characteristic polynomial of A is equal to minimal polynomial of A.
- For any $X \in \mathcal{S}_n(\mathbb{C})$ satisfies XA = AX, X is a polynomial of A.