題號: 41 科目:普通化學(C) 題號: 41 0.04 0.03 0.02 0.01 1000 2000 共 4 頁之第 | 頁 ※ 注意:請於試卷上「非選擇題作答區」標明題號並依序作答。 ## 半請在答案卷世樣明題號依靠作答為選擇題答案值程寫在答案卷上·例如:1.AB。 - $C = 3.00 \times 10^8 \text{ m/s}$; $h = 6.626 \times 10^{-34} \text{ J-s}$; F = 96500 C/mol - Gas constant: R = 8.314 J/mol-K= 0.0821 L-atm/mol-K - The periodic table: page 4 #### I. 選擇題 (60%,選擇題每題答案可能 1 至多個,全部選對始得題分 3 分) - 1. A sulfuric acid solution, H₂SO₄, is 43% by mass and has a density of 1.33 g/cm³. Calculate the molarity of H₂SO₄ in this solution. - (A) 4.4 M (B) 5.8 M (C) 18 M (D) None of the above - Solubility rules predict precipitate formation for mixing 0.1 M aqueous solutions of (A) NaCl and Hg(NO₃)₂ (B) HBr and Ba(OH)₂ (C) H₂SO₄ and Pb(NO₃)₂ (D) AgNO₃ and Na₂S - 3. The plots shown in the figure are the relative molecular speed distribution curves of two kinds of gases P and Q at 25°C. Which of the following statements are correct? - (A) The root mean square speed of Q is greater than P. - (B) The effusion rate of Q is greater than P. - (C) The average kinetic energy of Q is greater than P. - (D) The molar mass of Q is greater than P. - 4. The gas in a cylinder equipped with a piston (defined as the system) is warmed and absorbs 357 J of heat (q). The expansion performs 123 J of work (w) on the surroundings. Which of the followings is true? (ΔE: change in internal energy) (A) $$q = +357 J$$ (B) $w = +123 J$ (C) $\Delta E = +470 J$ (D) $\Delta H = 0 J$ - 5. In a coffee-cup calorimeter, 100.0 mL of 0.100 M AgNO₃ and 100.0 mL of 0.100 M HCl are mixed to yield the following reaction: Ag⁺(aq) + Cl⁻(aq) → AgCl(s). The two solutions were initially at 23.40°C, and the final temperature is 24.20°C. Calculate the heat of reaction in kJ/mol of AgCl formed. Assume that the combined solution has a mass of 200.0 g and a specific heat capacity of 4.18 J/°C-g. - (A) +33 kJ/mol (B) -33 kJ/mol (C) -67 kJ/mol (D) +67 kJ/mol (E) None of the above. - 6. For the following types of electromagnetic radiation: X-ray, ultraviolet (UV), visible, and infrared (IR), which of the following is correct? - (A) Highest frequency: X-ray - (B) Longest wavelength: visible - (C) Greatest energy: UV - (D) Lowest energy: IR - 7. How many orbitals have the quantum values of n = 5 and $\ell = 3$? - (A) 2 (B) 3 (C) 5 (D) 7 (E) None of the above. - 8. Which of the following ranking is correct? - (A) Ionic radius: $N^{3-} > O^{2-} > F^-$ (B) First ionization energy: Cl > S > Mg > Na - (C) Atomic size: Li > Na > K - (D) Bond polarity: C-H > N-H > O-H - 9. Which of the following molecules would have dipole-dipole interaction? - (A) PCl_5 (B) PH_3 (C) SO_3 (D) CIF_3 題號: 41 科目:普通化學(C) 題號: 41 共4頁之第2頁 10. For the following central atom (underlined), which one has the sp² hybrid orbitals? - (A) BeCl₂ - (B) <u>C</u>H₂O - (C) \underline{SO}_2 - (D) H₂S - 11. According to the phase diagram shown, choose the correct answer. - (A) Point A is the normal melting point. - (B) Point C is the normal boiling point. - (C) Curve AC is the vaporization curve. - (D) SCF stands for super critical fluid. - 12. Consider the following reaction at chemical equilibrium: - $2 \text{ KClO}_3(s) \implies 2 \text{KCl}(s) + 3 \text{O}_2(g)$ $\Delta H^{o} > 0$ Which of the following will increase the equilibrium constant of the reaction? - (A) Add some KClO₃(s) to the system. - (B) Add some catalyst to the system. - (C) Increase the volume of the reaction mixture at constant temperature. - (D) Raise the temperature of the system. - 13. The decomposition of SO_2Cl_2 is first order in SO_2Cl_2 and has a rate constant of 1.5×10^{-4} s⁻¹ at a certain temperature. How long will it take for the concentration of SO_2Cl_2 to decrease to 25% of its initial concentration? - (A) 1.5×10^{-4} s (B) 3.0×10^{-4} s (C) 4.6×10^{3} s (D) 9.2×10^{3} s (E) None of the above - 14. Consider the following reaction: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$ The initial rate of the reaction is measured at several different concentrations of the reactants with the following results. If the initial concentrations of NO₂ and CO are 0.30 and 0.50 M respectively, what is the value of the initial rate of the reaction? | [NO ₂] ₀ (M) | [CO] ₀ (M) | Initial rate (M/s) | |-------------------------------------|-----------------------|--------------------| | 0.10 | 0.10 | 0.0021 | | 0.20 | 0.10 | 0.0082 | | 0.20 | 0.20 | 0.0083 | | 0.40 | 0.10 | 0.033 | - (A) 0.019 M/s (B) 0.026 M/s (C) 0.032 M/s (D) 0.053 M/s (E) None of the above. - 15. The solubility product constant (K_{sp}) of an insoluble salt magnesium fluoride, MgF₂, is 4.0×10^{-12} . Calculate the molar solubility of MgF₂ in a 1.0 M Mg(NO₃)₂ solution. - (A) 1.0×10^{-6} M (B) 2.0×10^{-6} M (C) 1.0×10^{-4} M (D) 1.6×10^{-4} M (E) None of the above - 16. For the biopolymer, protein, choose the correct statement. - (A) The building blocks of protein are α -amino acids. - (B) Protein is a kind of addition polymer. - (C) The monomers are linked together by amide bonds. (D) Glycine H₂N OH is the simplest amino acid that is optically active. | 題號: 41 | | |--------|--| |--------|--| 科目:普通化學(C) 題號: 41 共 4 頁之第3 | 17. For the Haber process at 25° C, $N_2(g) + 3H_2(g)$ | = | $2NH_3(g)$, $\Delta H^0 = -92$ kJ and $\Delta S^0 = -198$ J/K. | Which | |---|---|---|-------| | of the following statements is correct? | | | | - (A) This is an exothermic reaction. - (B) The entropy of the system is increased. - (C) The reaction is spontaneous under standard states and 25°C. - (D) The reaction is very fast under standard states and 25°C. - 18. If 22.44 mL of a 0.1652 M KMnO₄ solution are required to titrate 25.00 mL of a H_2O_2 solution, using the reaction: $2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 5O_2 + 2Mn^{2+} + 8H_2O$. Calculate the concentration of the H_2O_2 solution. - (A) 0.05931 M (B) 0.1483 M (C) 0.3707 M (D) None of the above. - 19. Give the missing particle in the nuclear reaction: $^{90}_{38}Sr \rightarrow ? + ^{90}_{39}Y$ - (A) ${}_{2}^{4}\alpha$ (B) ${}_{0}^{1}n$ (C) ${}_{1}^{0}e$ (D) ${}_{-1}^{0}e$ - 20. Which one of the following can be done to shorten the half-life of the radioactive decay of I-131? - (A) Freeze it. - (B) Heat it. - (C) Oxidize to I₂. - (D) Add certain catalyst - (E) None of the above #### II. 填充題 (30%, 每題 3 分, 僅需將答案填寫於答案卷上, 無須計算過程) - 21. A compound contains only nitrogen and hydrogen and is 87.4% nitrogen by mass. A gaseous sample of the compound has a density of 0.977 g/L at 710. torr and 100. °C. Give the molecular formula of the compound: (21). - 22. Based on the Molecular Orbital model, give the electron configurations of the C₂ molecule: (22). - 23. For 0.10 M NH₃(aq), the pH value = (23) $K_b = 1.0 \times 10^{-5}$. - 24. Blood is buffered by carbonic acid and the bicarbonate ion. Normal blood plasma is 0.0012 M in H_2CO_3 and 0.024 M in HCO_3 . Calculate the pH of blood plasma, pH = (24). The pK_{a1} for H_2CO_3 at body temperature is 6.1, and pK_{a2} is 10.3. - 25. Consider these reactions and their respective equilibrium constants: $$NO(g) + 1/2Br_2(g) \implies NOBr(g)$$ $$K = 5.3$$ $$2NO(g) \implies N_2(g) + O_2(g)$$ $$K = 2.1 \times 10^{30}$$ Calculate the equilibrium constant K for the following reaction at that temperature, $$K = (25)$$. $N_2(g) + O_2(g) + Br_2(g) \implies 2NOBr(g)$ - 26. Consider the reaction: $CO(g) + 2 H_2(g) \implies CH_3OH(g)$ $K = 2.26 \times 10^4$ at $25^{\circ}C$. For the reaction at $25^{\circ}C$ under standard states, $\Delta G^{\circ} = (26)$ kJ - 27. For an electrochemical cell based on the reaction: $$MnO_4^-(aq) + 4H^+(aq) + 3Ag(s) \rightarrow MnO_2(s) + 2H_2O(l) + 3Ag^+(aq), \quad E^o_{cell} = +0.88 \text{ V}.$$ When [MnO₄] = 2.0 M and [Ag⁺] = 0.010 M, calculate the E_{cell} for the reaction = (27) V. 題號: 41 科目:普通化學(C) 題號: 41 共 4 頁之第4 頁 28~30. For the reaction, $2NO(g) + Cl_2(g) \implies 2NOCl(g)$, calculate the values of ΔH^o , ΔS^o , and ΔG^o at 298 K including the correct units from the following data. $$\Delta H^{0} = (28)$$, $\Delta S^{0} = (29)$, $\Delta G^{0} = (30)$. | | NO(g) | Cl ₂ (g) | NOCl(g) | |----------------------------|-------|---------------------|---------| | $\Delta H^{o}_{f}(kJ/mol)$ | 90.3 | _ | 51.7 | | S° (J/mol-K) | 211 | 223 | 262 | ### III. 計算問答題 (10%) - 31. Answer the following questions concerning with the complex ion [Co(en)₃]³⁺. - (A) Ethylenediamine (en) is a strong field ligand. Draw the structural formula of en. - (B) What's the coordination number of central metal ion? - (C) Draw the crystal-field energy-level diagrams, and show the placement of electrons for the complex. - (D) Is the complex ion diamagnetic or paramagnetic? | I
1A | _ | | | | | | | | | | | | | | | | 18
8A | |-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------| | 1
H
1.008 | 2
2A | | | | | | | | | | | 13
3A | 14
4A | 15
5A | 16
6 A | 17
7A | He | | 3
Li | 4
Be | | | | | | | | | | | ğ
B | é
č | 7
 N | 8
0 | 9
F | 4.003
10
Ne | | 6.941
11
Na | 9.012
12
Mg | 3 | 4 | . 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 10.81
13 | 12.01
14 | 14.01 | 16.00
16 | 19.00
17 | 20.18
18 | | 22.99 | 24.31 | 3B | 4B | 5B | 6B | 7B | 8B | 8B | 8B | 1B | 2B | A1
26.98 | Si
28.09 | 15
P
30.97 | S
32.07 | Cl
35.45 | Ar
39.95 | | 19
K
39.10 | 20
Ca
40.08 | 21
\$c
44.96 | 22
Ti
47.88 | 23
V
50.94 | 24
Cr
52.00 | 25
Mn
54.94 | 26
Fe
55.85 | 27
Co
58.93 | 28
Ni
58.69 | 29
Cu
63.55 | 30
Zn
65.39 | 31
Ga
69.72 | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | 37
Rb | 38
Sr | 39
Y | 40
Zr | 41
Nb | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 72.59
50
Sn | 74.92
51
\$b | 78.96
52
Te | 79.90
53 | 83.80
54
Xe | | 85.47 | 87.62
56 | 88.9 1
57 | 91.22 | 92.91 | 95.94 | (98) | 101.1 | 102.9 | 106.4 | 107.9 | 112.4 | 114.8 | 118.7 | 121.8 | 127.6 | 126.9 | 131.3 | | 55
Cs
132.9 | Ba
137.3 | *La
138.9 | 72
Hf
178.5 | 73
Ta
180.9 | 74
W
183.8 | 75
Re
186.2 | 76
Os
190.2 | 77
Ir
192.2 | 78
Pt
195.1 | 79
Au
197.0 | 80
Hg
200.6 | 81
T1
204,4 | 82
P6
207.2 | 83
Bi
209.0 | 84
Po
(209) | 85
At
(210) | 86
Rn
(222) | | 87
Fr | 88
Ra | 89
Ac | 104
Rf | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
Mt | 110
Ds | 111
Rg | 112
Uub | 407.7 | 114
Unq | £09.U | 116
Unda | (-10) | 118
Uno | | (223) | (226) | (227) | (261) | (262) | (263) | (262) | (265) | (268) | (271) | (280) | | | | | | | | | *Lanthanide series | 58 | 59 | 80 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |--------------------|-------|-------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | Ce | Pr | Nd | Pm | Sm | En | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | | | 140.1 | 140.9 | 144.2 | (147) | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | 175.0 | | ‡Actinide series | 90 | 91 | 9 <u>2</u> | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | | | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | | | 232.0 | 231.0 | 238.0 | 237.0 | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (260) |