國立臺灣大學106學年度轉學生招生考試試題

19

科目:微積分(B)

題號: 19

頁之第 共 3

本科目不得使用計算機

※請將選擇題作答於試卷內之「選擇題作答區」。

PART I: Multiple Choice (A), (B), (C), or (D). You do not need to justify your answer. (40%; 4% each.)

- 1. (A) $2^{3^2} = 8^2 = 64$.
 - (B) $\tan^{-1}(\tan \pi) = \pi$.
 - (C) If $f(x) = f^{-1}(x)$ for all $x \in \mathbb{R}$, then f(x) = x.
 - (D) $\left(1+\frac{1}{n}\right)^n < 3$ for all $n \in \mathbb{N}$.
- 2. (A) If f(x) is continuous on (a, b), then there is $c \in (a, b)$ such that $f(c) = \max_{(a, b)} f(x)$.
 - (B) Suppose that f(x) is continuous but not differentiable at x=0. The function g(x)=xf(x) must be differentiable at x = 0.
 - (C) If f(x) is a differentiable function, then $\lim_{x\to a} f'(x) = f'(a)$.
 - (D) If f(x) is continuous on [a,b] and differentiable on (a,b), then there is a unique $c \in (a,b)$ such that f(b) - f(a) = f'(c)(b - a).
- 3. Consider the function $f(x) = \frac{1 + e^{-x^2}}{1 e^{-x^2}}$.
 - (A) f(x) does not have any horizontal asymptotes and any vertical asymptotes.
 - (B) f(x) has a horizontal asymptote, but f(x) does not have any vertical asymptotes.
 - (C) f(x) has a vertical asymptote, but f(x) does not have any horizontal asymptotes.
 - (D) f(x) has a horizontal asymptote and a vertical asymptote.
- 4. (A) $\int_{-\pi}^{\pi} \sin mx \sin nx \, dx = 0$ for all $m, n \in \mathbb{N}$.
 - (B) $\int_{-\pi}^{\pi} \sin mx \cos nx \, dx = 0 \text{ for all } m, n \in \mathbb{N}.$
 - (C) $\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = 0 \text{ for all } m, n \in \mathbb{N}.$
 - (D) $\int_{-\pi}^{\pi} \sin^m x \cos^n x \, \mathrm{d}x = 0 \text{ for all } m, n \in \mathbb{N}.$
- 5. Consider the improper integral $I_p = \int_0^\infty \frac{1}{x^p} dx$, where p is a positive number.
 - (A) I_p is convergent if p > 1 and divergent if 0 .
 - (B) I_p is convergent if $0 and divergent if <math>p \ge 1$.
 - (C) I_p is convergent for all p > 0.
 - (D) I_p is divergent for all p > 0.
- 6. The enclosed area of the curve $(x^2 + y^2)^2 = x^2 y^2$ can be written in the integral form as
 - (A) $2\int_0^{\frac{\pi}{4}}\cos 2\theta \,d\theta$. (B) $4\int_0^{\frac{\pi}{4}}\cos 2\theta \,d\theta$.
 - (C) $2\int_0^{\frac{\pi}{4}} \sqrt{\cos 2\theta} \, d\theta$. (D) $\frac{1}{2}\int_0^{\frac{\pi}{4}} \cos 2\theta \, d\theta$.

國立臺灣大學106學年度轉學生招生考試試題

題號: 19

科目:微積分(B)

題號: 19

共 3 頁之第 2 頁

7. (A) If both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are absolutely convergent, then $\sum_{n=1}^{\infty} a_n b_n = \left(\sum_{n=1}^{\infty} a_n\right) \cdot \left(\sum_{n=1}^{\infty} b_n\right)$.

- (B) If $\sum_{n=1}^{\infty} a_n$ is convergent and $\sum_{n=1}^{\infty} b_n$ is divergent, then $\sum_{n=1}^{\infty} (a_n + b_n)$ must be divergent.
- (C) Suppose that f(x) is a positive and continuous function on $[1, \infty)$, and the improper integral $\int_{1}^{\infty} f(x) dx$ is convergent. Let $a_n = f(n)$, then $\sum_{n=1}^{\infty} a_n$ is convergent.
- (D) If $a_n \leq b_n$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ must be convergent.
- 8. (A) $\sum_{n=1}^{\infty} (-1)^n \left(1 \cos \frac{1}{n}\right)$ is absolutely convergent.
 - (B) $\sum_{n=1}^{\infty} \frac{1}{n-\ln n}$ is convergent.
 - (C) $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ is convergent.
 - (D) $\sum_{n=2}^{\infty} \frac{1}{n} \ln \left(\frac{n+1}{n-1} \right)$ is divergent.
- 9. Consider the function $f(x,y) = \sqrt{|xy|}$.
 - (A) f(x, y) is not continuous at (0, 0).
 - (B) f(x,y) is continuous at (0,0), but partial derivatives $f_x(0,0)$ and $f_y(0,0)$ do not exist.
 - (C) Both partial derivatives $f_x(0,0)$ and $f_y(0,0)$ exist, but f(x,y) is not differentiable at (0,0).
 - (D) f(x, y) is differentiable at (0, 0).
- 10. Consider the spherical coordinates system $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, and $z = \rho \cos \phi$. The volume element dV = dx dy dz can be changed as
 - (A) $\rho \sin \phi \, d\rho \, d\theta \, d\phi$.
 - (B) $\rho \cos \phi \, d\rho \, d\theta \, d\phi$.
 - (C) $\rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$
 - (D) $\rho^2 \cos \phi \, d\rho \, d\theta \, d\phi$.

PART II: Answer the following questions. (30%; 5% each.)

- 11. Suppose that a, b and c are constants and $\lim_{x\to -\infty} \left(\sqrt{ax^2+bx+c}+3x\right)=2$, then $(a,b)=\underline{\text{(11)}}$.
- 12. Let $f(x) = e^x(e^x 1)(e^x 2) \cdots (e^x 106)$. Find $f'(0) = \underline{(12)}$.
- 13. Suppose that f(t) is a continuous function on $(1, \infty)$ satisfying $\int_2^{1+x^2} f(t) dt = \ln x$, then $f(10) = \underline{(13)}$.
- 14. Evaluate the definite integral $\int_{1}^{1} \frac{\sin^{-1} x}{x^2} dx = \underline{(14)}$.
- 15. The length of the curve $C: (x(t), y(t)) = (t^3 + 1, \frac{3}{2}t^2 1), 0 \le t \le 1$ is (15).
- 16. Reverse the order of the iterated integral $\int_0^{\pi} \int_{\sin x}^1 f(x,y) \, dy \, dx : \underline{(16)}$.

國立臺灣大學106學年度轉學生招生考試試題

題號: 19 科目:微積分(B)

題號: 19

共 3 頁之第 3 頁

PART III: Solve the following problems. You <u>need</u> to write down complete arguments. (30%; 10% each.)

- 17. Given a family of parabolas $P_n: y = nx^2 + \frac{1}{n}$, where $n \in \mathbb{N}$. Let A_n be the area between P_n and P_{n+1} . Find the limit $\lim_{n \to \infty} \frac{A_n}{n^3}$.
- 18. Use the Taylor series method to find the limit $\lim_{x\to 0} \frac{\sqrt{1-x^4}-e^{2x^4}}{(1-\cos x)\sin^2 x}$.
- 19. Suppose that f(t) is a continuous function on $[0,\infty)$ satisfying

$$f(t)=\mathrm{e}^{\pi t^2}+\iint_{x^2+y^2\leq t^2}f\left(\sqrt{x^2+y^2}
ight)\mathrm{d}A.$$

Find f(t).

試題隨卷繳回