國立臺灣大學 110 學年度碩士班招生考試試題

題號: 285 科目: 統計理論

節次: 4 共2頁之第1頁

題號:285

1. (10 points) Let $X \sim Beta(\alpha, \beta)$ and $Y \sim Beta(\alpha + \beta, \gamma)$ be two independent variables of beta distribution. Find the distribution of XY by making the transformations U=XY, V=Y. The pdf of beta distribution, Beta(a,b), is given by

$$f(x|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}, \quad 0 < x < 1.$$

2. Let $X_1, ..., X_n$ be a random sample from the following density function

$$f(x|\theta) = \frac{2}{\sqrt{\pi \theta}} exp\left\{-\frac{x^2}{\theta}\right\}, \quad x > 0, \quad \theta > 0.$$

- (a) (5 points) Find the MLE (maximum likelihood estimator) of θ . Is it an unbiased estimator?
- (b) (10 points) Use the MLE in (a) to obtain a $100 \times (1-\alpha)\%$ confidence interval for θ .

Hint: $\frac{2X_t^2}{a}$ is distributed as a Chi-square distribution.

- 3. Let $X_1, ..., X_n$ be a random sample from the distribution with pdf $f(x|\theta) = \frac{\theta x^{\theta-1}}{3^{\theta}}$, 0 < x < 3.
 - (a) (5 points) Find the method of moment estimator of θ .
 - (b) (10 points) Find the limiting distribution of $\sqrt{n}(T-\theta)$ as $n\to\infty$ by the Delta method, where T is the method of moment estimator of θ .

Hint: the Delta method is stated as the following

If $\sqrt{n}(W-\theta) \to N(0,\sigma^2)$, as $n \to \infty$; then under regularity conditions

$$\sqrt{n}(g(W)-g(\theta)) \to N(0,\sigma^2(g'(\theta))^2).$$

- 4. Suppose that $X_1, ..., X_n$ are independent identically distributed random variables from the normal distribution with unknown mean μ and known variance σ^2 . Consider the parameter function $g(\mu) = e^{2\mu}$.
 - (a) (5 points) Find the uniform minimum variance unbiased estimator (UMVUE) of $g(\mu)$.
 - (b) (5 points) Find the Cramér-Rao lower bound (CRLB) for the variance of unbiased estimator of $g(\mu)$. Is the CRLB attained by the variance of the UMVUE?
- 5. Let X be the number of calls received during any one hour, and follow a Poisson distribution with pmf: $P(X = x | \lambda) = \frac{\lambda^x}{x!} e^{-\lambda}$, x = 0, 1, 2, ...

To test $H_0: \lambda = 4$ vs. $H_A: \lambda = 1$ and we know

	x = 0	x = 1	x = 2	x = 3	x = 4
$P(X=x) = \frac{4^x}{x!}e^{-4}$	0.02	0.07	0.15	0.20	0.20
	0.37		0.18	0.06	0.02

- (a) (2 points) When significant level is set as 0.05, fine the rejection region of X.
- (b) (2 points) When $X \in \{0, 1\}$, reject H_0 . Find the probability of type I error.
- (c) (2 points) When $X \in \{0, 1\}$, reject H_0 . Find the probability of type II error.
- (d) (2 points) When $X \in \{0, 1\}$, reject H_0 . Find the power of the test.
- (e) (2 points) When hypothesis test: $H_0: \lambda \ge 4$ vs. $H_A: \lambda < 4$ with the same significant level α given in Question(a), find the rejection region.
- (f) (2 points) When hypothesis test: $H_0: \lambda \ge 4$ vs. $H_A: \lambda < 4$ with the same significant level α given in Question(a), find the infimum (inf) of testing power.

國立臺灣大學 110 學年度碩士班招生考試試題

題號: 科目: 統計理論

285

節次:

題號:285

共2頁之第2頁

6. Student A use simple linear regression to test the linear relationship between Y and X. The summary of result shown as below:

Call: $lm(formula = Y \sim X)$								
Coefficients:								
	Estimate	Std. Error	t value	Pr(> t)				
(Intercept)	0.1049	1.6875	0.062	0.951				
X	1.8430	0.3157	5.838	7.12×10^{-6}				
Residual standard error: 3.862 on 22 degrees of freedom								

Please fill the blanks of ANOVA table based on the information of above result.

Analysis of Variance Table						
Response: Y						
	Df	Sum Sq	F value	Pr(>F)		
X	(A)	508.38	(C)	(D)		
Residuals.	(B)	328.15				

- (a) (2 points)(A) = ?
- (b) (2 points) (B) = ?
- (c) (2 points)(C) = ?
- (d) (2 points)(D) = ?
- (e) (2 points) find R^2 of this regression analysis.

Y1 and X1 are separately the normalized Y and X. Using simple linear regression to test the linear relationship between Y1 and X1. The summary of result was shown as below, and answer following questions.

Call:
$$lm(formula = Y1 \sim X1)$$

Coefficients:

Estimate Std. Error. t value $Pr(>|t|)$
(Intercept) 1.913×10^{-16} 0.1307 0.000 1
 $X1$ 0.7796 0.1335 (E) (F)

- (f) (2 points)(E) = ?
- (g) (2 points)(F) = ?
- (h) (2 points) Find the sample correlation coefficient of X and Y.
- (i) (2 points) Find the F statistic of this linear regression analysis.

7.

- (a) (4 points) Please state the Neyman-Pearson Theorem.
- (b) (6 points) Please prove the Neyman-Pearson Theorem.
- 8. Let X_1, X_2 be a random sample from the distribution having pdf $f(x|\beta) = \beta e^{-\beta x}$, $0 < x < \infty$.

When
$$\frac{\prod_{l=1}^2 f(x_l|\frac{1}{2})}{\prod_{l=1}^2 f(x_l|1)} \le \frac{1}{2}$$
, we reject H_0 : $\beta = \frac{1}{2}$ and accept H_1 : $\beta = 1$.

Hint: the pdf of
$$Gamma(\alpha, \beta)$$
 is given by $f(y|\alpha, \beta) = \frac{y^{\alpha-1}\beta^{\alpha}e^{-\beta y}}{\Gamma(\alpha)}, y > 0$

- (a) (5 points) Find the significant level of this test.
- (b) (5 points) Find the power of this test.

試題隨恭繳回