題號: 236 科目: 靜力學 節次: 7 題號:236 共 3 頁之第 1 頁 ※ 注意:請於試卷內之「非選擇題作答區」依序作答,並應註明作答之大題及小題題號。 1. Figure 1 shows two meshing spur gears. A Z_l -tooth pinion drives a Z_2 -tooth gear with a rotational speed of n_l to transmit a power of P. The gear module is m, and their pressure angle is ϕ . [P]=W, [n]=rpmUsing the above mentioned parameters to determine the following parameters: - (a) The torques of the pinion T_I and the gear T_2 . (5 \mathcal{D}) - (b) The tangential force F_t and the radial force F_r . (5 \mathcal{D}) Fig.1 Two meshing spur gears 2. Figure 2 shows a bolt cutter with its dimensional parameters, and F is the actuating force. Using the given parameters to determine the cutting force F_D for the d-diameter bolt. (8 \mathcal{L}) Fig.2 Bolt cutter with d-diameter Bolt 236 ## 國立臺灣大學 106 學年度碩士班招生考試試題 静力學。 科目: 節次: 題號:236 共 3 頁之第 2 頁 3. Figure 3 shows an actuator working against an diamter d by length L bar, whose Young's modulus is E. Through a hydraulic pressure of p, This actuator can generate a maximum stroke L_a for no load and a maximum force F_a for no stroke, and the maximum force F_a for no stroke is defined as $F_a = C_p \cdot p$. Using the given parameters (d, L, E, p, L_a, C_p) to determine the following parameters: - (a) The spring constant of the bar k_{bar} . (6 分) - (b) The relationship between the spring constant of the actuator k_a and the hydraulic pressure p. (6 \mathcal{D}) - (c) The actuating stroke L_w and the actuating force F_w for the actuating situation (Fig. 3(b)) by charging a pressure of p. (10 分) (b) Actuator working against bar Fig. 3 Actuator working against bar 4. As shown in the Fig. 4, a momentum M_B is applied to drive the drum B and maintain a constant speed in the polishing belt system. ## Assume: - (1) $\mu_k = 0.45$ between the belt and the 15 kg block being polished; - (2) $\mu_s = 0.3$ between the belt and the drive drum B. ## Determine: Fig. 4 The system of polishing belt - (a) the couple of $M_B(10 \, \text{分})$, - (b) the minimum tension (20 分) in the lower portion of the belt, if there has no slipping between the belt and the drive drum. (The belt is V-shaped. $\alpha = \pi/3$) 題號: 236 科目: 静力學 科目: **静力** 節次: 7 題號:236 共 3 頁之第 3 頁 5. The cross sections for the truss members are 2.5mm X 2.5 mm. (a) Find the stresses on each member. (6 分) (b) Indicate the stress types (compression or tension). (6 分) Fig. 5 - 6. A hungry bear weighing 700 N walks out on a beam in an attempt to retrieve a basket of food hanging at the end of the beam. The beam is uniform, weighs 200 N, and is 6.00 m long; the basket weighs 80.00 N. - (a) Draw a free-body diagram for the beam. (6分) - (b) When the bear is at x = 1.00 m, find the tension in the wire and the components of the force exerted by the wall on the left end of the beam. (6 %) - (c) If the wire can withstand a maximum tension of 900 N, what is the maximum distance the bear can walk before the wire breaks? (6 分) Fig. 6