題號: 425

起航・ 420 科目: 數學

節次: 4

國立臺灣大學 103 學年度碩士班招生考試試題

題號: 425

共 2 頁之第 / 頁

1. (10%) How many ways are there to arrange TALLAHA with no adjacent As?

- 2. (10%) The number of positive-integer solutions to $x_1 + x_2 + \cdots + x_n = r$, where r > 0, is _______. (That is, all x_i must be positive integers to qualify as one solution.)
- 3. (5%) How many functions from $\{0,1\}^m$ (an *m*-dimensional boolean vector) to $\{0,1\}^2$ (a 2-dimensional boolean vector) are there?
- 4. (10%) The function

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{i=0}^{\infty} a_i x^i$$

is the generating function for the sequence $\{a_i\}_{i=0,1,...}$. The harmonic numbers $\{H_i\}_{i=0,1,2,...}$ are defined by

$$H_0 = 0,$$
 $H_i = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{i} \quad (i \ge 1).$

Derive the closed-form generating function for the harmonic numbers.

- 5. (10%) Solve the recurrence equation $a_{n+2} = a_{n+1} + 2a_n$ with $a_0 = 0$ and $a_1 = 1$.
- 6. (5%) The postorder traversal of the following rooted binary tree is

7. (10%) Let V be a vector space over a scalar field F. For any subset S of V, let $\operatorname{span}(S)$ consist of the vectors of V that can be written as $a_1x_1 + a_2x_2 + \cdots + a_nx_n$ with $a_1, a_2, \ldots, a_n \in F$ and $x_1, x_2, \ldots, x_n \in S$ for some positive integer n. Prove that $\operatorname{span}(S)$ is the unique subspace of V such that any subspace of V containing S has to contain $\operatorname{span}(S)$. Specifically, you have to show that (a) $\operatorname{span}(S)$ is a subspace of V, (b) if U is a subspace of V with $S \subseteq U$, then $\operatorname{span}(S) \subseteq U$, and (c) there is no other subspace of V satisfying property (b).

科目:數學

節次:

題號: 425 共 2 頁之第 2 頁

8. (10%)

- (a) Let T be a linear transformation from V to W, where V and W are finite-dimensional vector spaces over a comon scalar field F. We have $\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(\underline{\hspace{1cm}})$.
- (b) Let R consist of the real numbers. Let function $f: \mathbb{R}^3 \to \mathbb{R}^3$ be defined as

$$f(x, y, z) = (x + y + z, x - y, y - z).$$

If $g: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear function with g(1,1,0) = (2,0,1), g(1,0,1) = (2,1,-1), and g(0,1,1) = (2,-1,0), then $g(5,3,0) = \underline{\hspace{1cm}}$.

- (c) If the dimension of the vector space $M_{7\times 4}(C)$ of matrices with seven rows and four columns over the field C of complex numbers equals the dimension of the vector space R^n of n-tuples over the field R of real numbers, then n = 1.
- (d) Let A be an $m \times n$ matrix over the field R of real numbers. If the m rows of A are linearly independent, then the dimension of the vector space spanned by the n rows of A is ______.
- (e) If U and V are two distinct subspaces of a vector space W with $\dim(W) = 6$, then $\dim(U \cap V)$ is either _____ or ____.
- 9. (10%) Let

$$A = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

Find A^{-100} and A^{101} .

10. (10%) Consider the following system of linear equations:

$$2x + y + z = 4$$
$$4x + 2y + 2z = 8$$
$$5x + y = 19.$$

Find the solution (x, y, z) to the above system of linear equations that minimizes $x^2 + y^2 + z^2$.

11. (10%) Find the eigenvalues of the following matrix:

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$