題號: 68 國立臺灣大學 103 學年度碩士班招生考試試題

科目:普通化學

節次: 8

題號: 68 共 2 頁之第 / 頁

1. The work function for Fe is 434 kJ/mol. What is the maximum wavelength of an incident light for the generation of photoelectron from iron electrode? (6 points)

- 2. Calculate the de Broglie wavelength of a hydrogen atom moving with a velocity 10 % of the speed of light. (6 points)
- 3. Rationalize the following lattice energy values: (6 points)

Compound	Lattice energy (kJ/mol)
NaBr	-747
LiF	-1007
CaF ₂	-2613
CaO	-3513

- 4. Given the ionic radius of Na⁺(95 pm) and Cl⁻ (181 pm), please calculate the density of sodium chloride. (NaCl = 58.44 g/mol) (6 points)
- 5. Calculate the osmotic pressure of a 0.15 M NaCl aqueous solution at 25 °C. (6 points)
- 6. Please define the ideal gas and ideal solution. (6 points)
- Carbon monoxide, CO, possesses similar molecular orbital ordering to N₂. Please
 draw the molecular orbital energy-level diagram of CO (both A.O. and M.O. are
 required). (10 points)

A.O. of carbon M.O. of CO A.O. of oxygen

- 8. Calculate the bond order of CO⁺ and CO². (6 points)
- 9. The diffusion rate of methane was found to be 1.41 times faster than that of an unknown gas molecule at room temperature. Question: What is the density of the unknown gas molecule under STP condition? (CH₄ = 16.04 g/mol) (6 points)
- 10. 100 mL of 1.0 M H₂SO₄ solution was added to 1 L of buffer solution, which was prepared from 1.50 M acetic acid ($K_a = 1.8 \times 10^{-5}$ M) and 1.50 M of sodium acetate. Please calculate the pH value *before* and *after* the addition of sulfuric acid. (12 points)
- 11. Gas molecule A undergoes photolysis under the irradiation of UV light. The change in concentration of A is shown below. Question: If the initial concentration of A is 0.75 M, how long does it take to consume 75 % of molecule? (6 points)

Time (h)	[A] (M)
0	0.200
1	0.160
2	0.133
4	0.100
6	0.080
8	0.067
10	0.057
12	0.050

題號: 68

國立臺灣大學 103 學年度碩士班招生考試試題

科目:普通化學

節次: 8

題號: 68 共 2 頁之第 2 頁

12. Please calculate the ΔH_{vap} and predict the normal boiling point of an unknown solvent with the vapor pressure data given below. (12 points)

T (°C)	P (torr)
-74.3	1
-48.1	10
-27.7	40
-11.5	100
17.9	400

13. Given $\sigma = (Zr/a_0)$ and $a_0 = 0.529$ Å. Please calculate the radial nodal locations of the $R_{2,0}$ and $R_{3,1}$ orbitals of He⁺. (12 points)

Radial Part
$$R_{n\ell}(r)$$

$$R_{1s} = 2\left(\frac{Z}{a_0}\right)^{3/2} \exp(-\sigma)$$

$$R_{2s} = \frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} (2 - \sigma) \exp(-\sigma/2)$$

$$R_{3s} = \frac{2}{81\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} (27 - 18\sigma + 2\sigma^2) \exp(-\sigma/3)$$

$$R_{2p} = \frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \sigma \exp(-\sigma/2)$$

$$R_{3p} = \frac{4}{81\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} (6\sigma - \sigma^2) \exp(-\sigma/3)$$

$$R_{3d} = \frac{4}{81\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} \sigma^2 \exp(-\sigma/3)$$

Speed of light	3 x 10 ⁸ m s ⁻¹
Planck constant	6.626 x 10 ⁻³⁴ J s
Boltzmann constant	1.38 x 10 ⁻²³ J K ⁻¹
Electron mass	9.11 x 10 ⁻³¹ kg
Proton mass	1.67 x 10 ⁻²⁷ kg
Avogadro constant	6.02 x 10 ²³ mol ⁻¹
Universal gas constant	0.082 L atm K ⁻¹ mol ⁻¹ 8.314 J K ⁻¹ mol ⁻¹

試題隨卷繳回