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. We are trying to develop an energy harvesting device to collect energy from stepping. The system is

illustrated as in Figure 1, where 7 represents the step force, x Tepresents the downward displacement of
the step, m is the mass of the pad, by and %y are the damping ratio and the spring constant of the pad,
respectively. The rack and pinning has a pitch of P = 2mry/100, where 7, is the pitch radius of the pinning,
The electrical generator has a back emf constant equal to the torque constant, K. Assume the battery
behaves like a capacitor, (5, with internal resistant R,. i, and Vo are the current into the battery and

voltage across the battery.

Figure 1

a). What is the relationship between the time derivative of the displacement, %, and the rotor speed, wm,?
(5%)

b). Let w; be the rotor speed of the generator. Derive the transfer fimction from the rotor speed (), to the
output voltage V,. (5%)

¢). Now the step force is balanced by three forces: the spring force, the damping force, and the reaction
force from the rack. Neglect the inertia of the rack and pinning; write down the force balance equation

governing the pad movement. (5%)

d). Derive the transfer function of the system from the mput step force, F{(s), to the output voltage, Vy(s),
across the battery voltage. ( 10%)
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system is very oscillatory (see Figure 2). System identification reveals that there is a pair of complex

2. Consider a higher order system G(s) = , the step response of the open-loop

poles at -0.2 £j1.99.
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Figure 2

a). Use partial fraction expansion to decompose the system dynamics into fast and slow dynamics. (5%)

b). Can you use a propositional control to tune up the closed-loop damping ratio and suppress this

oscillation, say to £ = 0.87 (5%)

¢). What is the smallest order control required if we were to suppress the steady state error to arbitrary

small? (5%)

d). How would the system behave if we use only proportional control and crank up the gain real high?

(10%)
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3. Sketch Bode plots of the following systems (please specify the slopes and significant angles):

a). G(s)= _ s+10 . (5%)
s(s+1)(s +100)

b). G(s)= _s=2 (5%)

' s(s+50)

s+10

. G(s)= (5%

). G(s) = o (5%)
4. Consider the closed-loop system in Figure 4, where G(s) = (S_ ) with a>5>0
s(s+a

a). Using root-locus, show that the closed-loop system cannot be stabilized by a proportional (P)

controller K(s)=K, with K,e[0, oo].(5%)

b). Using reot-locus, show that the system can be stabilized by a proportional-derivative (PD) controller

K, +K,s
S+7

K(s)=K,+K,s=K,(s+c). (Note: in practice, we normally set K(s)= with a large 7

to approximate K (s) = K, + K ,5.) (5%)

c). Suppose G(s) = —(—S:-;F) » it is known that the closed-loop poles can be arbitrarily assigned using a
s(s +

first-order controller K(s)zm. Please find a suitable controller K(s) such that the

S+d,

closed-loop poles are all located at s=-2. (5%)

FS) =y K (s) — G(s) y(s)

Figure 4

2
5. Refer to Figure 4 with K(s5)G(s) = w

H

a). Draw the Nyquist plot of the system when a =1. (5%)
b). Find the gain margin and phase margin and phase margin of the system when a =1. (5%)

¢). State Nyquist Criterion, and use Nyquist Criterion to decide the range of « such that the
closed-loop system is stable. (10%)
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