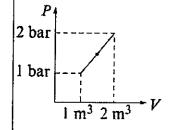
題號: 224

國立臺灣大學 111 學年度碩士班招生考試試題

科目: 熱力學(B)


題號:224

節次: 6

共 3 頁之第 1 頁

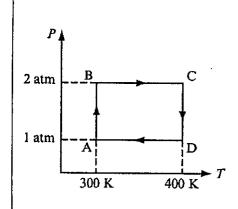
單選題(1-14),每題 5 分,合計共 70 分。※ 注意:請於試卷內之「選擇題作答區」依序作答。

- (1)Which of the following pair does show the extensive properties?
- (a) temperature and pressure
- (b) viscosity and surface tension
- (c) refraction index and specific heat
- (d) volume and heat capacity
- (2) Which of following is incorrect about reversible process?
- (a) System remains always in thermodynamic equilibrium.
- (b) The process is extremely slow.
- (c) The process may be reversed at any stage only by making infinitesimally small change in opposite direction.
- (d) Reversible process may be performed in finite time.
- (3)A system absorbs 100 kJ heat in the process shown in the following figure. What is $\triangle U$ for the system?

- (a) -50 kJ (b) +50 kJ (c) +150 kJ (d) -150 kJ
- (4) The minimum work which must be done to compress 16 g of oxygen isothermally, at 300 K from a pressure of 1.013×10³ N/m² to 1.013×10⁵ N/m² is
- (a) 5727 J (b) 11.454 kJ (c) 123.255 kJ (d) 1232.55 J
- (5) Two moles of helium gas undergoes a cyclic process as shown in the following figure. Assuming ideal behavior of gas, the net work done by the gas in this cyclic process is

見背面

題號: 224


國立臺灣大學 111 學年度碩士班招生考試試題

科目: 熱力學(B)

題號:224

節次: 6

共 3 頁之第 2 頁

- (a) 0 (b) 100R ln2 (c) 100R ln4 (d) 200R ln4
- (6) At 500 kbar and T K, the densities of graphite and diamond are 2.0 and 3.0 g/cm³, respectively. The value of $(\Delta H \Delta U)$ for the conversion of 1 mole of graphite into diamond at 500 kbar and T K is
- (a) 100 kJ (b) -100 kJ (c) 1000 kJ (d) -1000 kJ
- (7) A diatomic ideal gas initially at 273 K is given 100 cal heat due to which system did 210 J work. Molar heat capacity of the gas for the process is (1 cal = 4.2 J)
- (a) 3/2 R (b) 5/2 R (c) 5/4 R (d) 5 R
- (8) When one mole of an ideal gas is compressed to half of its initial volume and simultaneously heated to twice its temperature, the change in entropy is
- (a) Cv ln2 (b) Cp ln2 (c) R ln2 (d) (Cv-R) ln2
- (9) Oxygen gas weighing 64 g is expand from 1 atm to 0.25 atm at 30 °C. What is the entropy change, assuming the gas to be ideal?
- (a) 23.24 J/K (b) 34.86 J/K (c) 46.48 J/K (d) 11.62 J/K
- (10) Change in entropy is negative for
- (a) Bromine (l) \rightarrow Bromine (g)
- (b) C (s) + $H_2O(g) \rightarrow CO(g) + H_2(g)$
- (c) N_2 (g, 10 atm) $\rightarrow N_2$ (g, 1 atm)
- (d) Fe (10 mol, 400 K) \rightarrow Fe (1 mol, 300 K)

接次頁

題號: 224

國立臺灣大學 111 學年度碩士班招生考試試題

科目: 熱力學(B)

題號:224

節次: 6

共 3 頁之第 3 頁

(11) A spontaneous reaction is impossible if

- (a) both $\triangle H$ and $\triangle S$ are negative
- (b) both $\triangle H$ and $\triangle S$ are positive
- (c) $\triangle H$ is negative and $\triangle S$ is positive
- (d) \triangle H is positive and \triangle S is negative
- (12) For a system in equilibrium, $\triangle G = 0$ under conditions of constant
- (a) temperature and pressure
- (b) temperature and volume
- (c) pressure and volume
- (d) energy and volume
- (13) An average human produces about 10 MJ of heat each day through metabolic activity. If a human body were an isolated system of mass 80 kg with the heat capacity of water of 4.2 J/K-g, what temperature rise would the body experience?
- (a) 29.76 °C (b) 2.946 K (c) 2.976 \times 10⁴ °C (d) 0.029 °C
- (14) The entropy change of 2 moles of an ideal gas whose adiabatic exponent r = 1.5 if as a result of a certain process, the gas volume increased two times while pressure dropped four times, is
- (a) -11.64 J/K (b) +11.64 J/K (c) -34.92 J/K (d) +34.92 J/K

非選擇題(15-16),共30分。※ 注意:請於試卷內之「非選擇題作答區」作答,並應註明作答之題號。

- (15) An ideal gas with constant heat capacity undergoes a change of state from conditions T_1 , P_1 to conditions T_2 , P_2 . Determine $\triangle H$ (J/mol) and $\triangle S$ (J/mol-K) from the following cases: $T_1 = 300$ K, $P_1 = 1.2$ bar, $T_2 = 450$ K, $P_2 = 6$ bar, $C_p/R = 7/2$. (10 \Re)
- (16) The PVT behavior of a certain gas is described by the equation of state
- P(V-c) = RT where c is constant. If in addition C_v is constant, show that
- (a) U is a function of T only. (6 分)
- (b) $C_p/C_v = r = \text{const.}$ (6 分)
- (c) For a mechanically reversible adiabatic process, P(V-c)' = const. (8 分)

試題隨卷繳回