題號: 238

國立臺灣大學 104 學年度碩士班招生考試試題

科目:控制系統(A)

238 題號:

節次:

共 頁之第 頁

*Note: 請將題號及答案標示清楚

- 1. (20%) Consider the mechanical system of Fig. 1, where m_1 and m_2 are masses, K is a spring and C is a damper. F is the applied force. y_1 and y_2 are the displacements of m_1 and m_2 . respectively.
 - (1) (5%) Write the dynamic equations of m_1 and m_2 .
 - (2) (5%) Find the transfer function $T_{F \to y_1}$ from F to y_1 .
 - (3) (5%) Consider the closed-loop system of Fig. 2 with $G(s) = T_{F \to y_1}$ and a PD-control $C(s) = K_p + \frac{K_D s}{\tau s + 1}$ where $\tau \ll 1$, calculate the steady-state error to a step input $R(s) = \frac{1}{s}$.
 - (4) (5%) Set the state as $x = \begin{bmatrix} y_1 & \dot{y}_1 & y_2 & \dot{y}_2 \end{bmatrix}^T$ with input of F and outputs of $\begin{bmatrix} y_1 & y_2 \end{bmatrix}^T$, please derive the corresponding state-space model.

Fig. 1

題號: 238 國立臺灣大學 104 學年度碩士班招生考試試題

科目:控制系統(A)

題號: 238 共 ² 頁之第 <u></u> 頁

節次: 7

2. (30%) Consider the closed-loop of Fig. 2 with $G(s) = \frac{1}{s^3 + 3s^2 + 2s}$,

- (1) (5%) Applying a P-control $C(s) = K_P$, please sketch the root-loci of the closed-loop poles as $K_P: 0 \to \infty$.
- (2) (5%) Find the value of K_p that would give the fast settling time to step commands.
- (3) (5%) Estimate the setting time (within 2% error) to step commands by the K_P found in (2).
- (4) (5%) What is the range of K_P such that the closed-loop system is stable?
- (5) (5%) What is the value of K_p so that the closed-loop system has a damping ratio of $\frac{1}{\sqrt{2}}$?
- (6) (5%) What is the natural frequency of the closed-loop system by the K_P found in (5).
- 3. (12%) What are the objectives of the approaches of root locus, Nyquist plot, Bode diagram, and Nichols chart? (6%) Why can they determine the closed-loop characteristics of a system based on the open loop transfer function? (6%)
- 4. (25%) For a unity feedback system, the open loop transfer function G(s) is given as

$$G(s) = \frac{K(s+3)}{s(s^2 + 4s + 25)}$$

The closed-loop system performance requires 5% steady-state error for a ramp input, and 45° phase margin. Use the Bode diagram approach to design a cascade compensator to achieve the requirements. (Hint: the semi-log diagrams are given in Fig.3.)

- 5. (13%) A system has the transfer function shown as $G(s) = \frac{40}{(s+2)(s+10)}$.
 - (1) (7%) Find the bandwidth of the system.
 - (2) (6%) For a 20Hz input signal, how does the system react to the signal? Why?

題號: 238 國立臺灣大學 104 學年度碩士班招生考試試題

科目:控制系統(A)

題號: 238

ᄷᇰ 頁之第 3 頁

節次:

Fig. 3

試題隨卷繳回