國立臺灣大學104學年度轉學生招生考試試題

題號: 18 科目:微積分(A)

題號: 18

共 / 頁之第 / 頁

※ 注意:請於試卷上「非選擇題作答區」內依序作答,並應註明作答之大題及其題號。

There are four problems $1 \sim 4$ in total; some problems contain sub-problems, indexed by (a), (b), etc.

1. (a) [10%] Let u(x), v(x) be positive and differentiable on an open interval. Find the derivative of the function

 $[u(x)]^{v(x)}$.

(b) [15%] Let T be the surface in \mathbb{R}^3 given by the equation

$$(\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1.$$

Compute the surface integral

$$\int_T |z| \, \mathrm{d}S$$

where dS denotes the element of surface.

- 2. (a) [15%] Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$ be a power series $(a_k \in \mathbb{R})$. Suppose that f(x) converges at c where c > 0. Show that f(x) converges at any x with |x| < c.
 - (b) [10%] Give an explicit example of a power series which converges exactly on the interval (-1,1]. You need to justify your answer.
- 3. Consider the improper integral

$$G(s) = \int_0^\infty e^{-x} x^{s-1} \, \mathrm{d}x.$$

- (a) [15%] Show that the integral G(s) exists and defines a continuous function for s>0.
- (b) [10%] Evaluate $G(\frac{1}{2})$.
- 4. [25%] Let F(x,y) and G(x,y) be differentiable on an open domain S in \mathbb{R}^2 . Suppose under the condition G(x,y)=0 that F(x,y) reaches its maximal at the point $(a,b)\in S$. Show that if $G_x(a,b)\neq 0$, there exists a real constant λ such that

$$F_x(a,b) = \lambda \cdot G_x(a,b)$$

$$F_y(a,b) = \lambda \cdot G_y(a,b).$$